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ABSTRACT 
The grid topology of the networks has many applications in various fields of sciences e.g. GIS, 
transportation, image processing, textile, etc. The Hamiltonian path detection is classified as an NP-hard 
problem. In the grid networks, the directions of the movements are restricted in the horizontal and the 
vertical directions. Some nodes are restricted to travers at least once between the predetermined source 
and destination nodes those are traversed as the initial node and the last node, respectively. An 
approximation algorithm based on Cristofieds’ heuristic is applied to find an approximation solution in a 
constructed complete graph, and then it is transformed as a solution for the original grid network. The 
method is developed to construct a solution formed by the orthogonal paths. 
Keywords: Christofides’ algorithm, path Traveling salesman problem, Grid networks, Restricted 
Hamiltonian path.

1. INTRODUCTION

Let G = (A, N) be a gird network that is bounded in the plane [−L, L] × [−L, L] and A is the 
vertical or the horizontal arcs, and N is the set of nodes (coordinations) (see Figure 1). The 
lengths of the arcs are assumed to be one toward any vertical or horizontal adjacency nodes. 
Then, for any coordination (xi, yi) ∈ A that −L ≤ xi ≤ L and −L ≤ yi ≤ L, the movements are 
possibly (xi, yi + 1), (xi, yi − 1), (xi + 1, yi) and (xi − 1, yi). 
There are some nodes that they are restricted to be traversed along the path from the given 
source node s to the given node t. The problem is called s − t TSP or path TSP that in the 
general formulation the all nodes are constrained to be traversed exactly once, however in the 
grid networks, the nodes could be traversed several times and the path is started from the source 
node s and it is ended in the destination node t. 
There are some approximation algorithms for path TSP problem, especially the Held-Karp 
relaxation [1,2] and the Christofides’ heuristic [3]. Related to an approximation algorithm APA, 
the approximation ratio α describes that the solution by APA is α times of the optimal solution; 
for our considered a minimization problem, the approximation ratio α is equal or greater than 
one (α ≥ 1. Almost all of the approximation ratios for the path TSP problem were produced by 
the Christofides’ heuristic, that it is started with a minimum spanning tree. For an 
approximation algorithm, the triangular inequality should be satisfied by the arc lengths. 
The Christofides [3] obtained an algorithm with the approximation ratio 3

2
, by the minimum 

spanning tree for the symmetric TSP. Hoogeveen [4] showed the Christofides’ heuristic for path 
TSP problem is a 5

3
-approximated algorithm. An et al. [5] gave the approximation ratio 1+√5

2
 for 

path TSP in the metric space. For the clustered travelling salesman problem that the node set is 
partitioned into some clusters, Bao and Liu [6] obtained the approximation ratio 2.17; then, Bao 
et al. [7] proposed the improved approximation ratio 1.9. De Andrade [8] considered the 
shortest path problem, where the shortest path should traverse a given set of nodes exactly once, 
it is known as an NP-hard problem. Gao [9] studied some approximation algorithms for the 
metric path TSP. 
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2. PATH TSP FORMULATION

According to the distances in the grid networks, the connected path between coordination 
i = (xi, yi) and j = (xj, yj) needs exactly |xi − xj| horizontal and |yi − yj| vertical movements, 
then cij = |xi − xj| + |yi − yj| determines the shortest length from i to j. 
Let NR be the set of the restricted nodes in the grid network G, then the transformed network 
GR = (NR, AR) is constructed by the node set NR and the arc set AR. For any nodes i, j ∈ NR 
there is an arc (i, j) ∈ AR in the network GR. So, the transformed network GR will be a complete 
graph. The arcs’ costs in GR are assumed to be the computed cij in the original grid network, 
whereas they are satisfied the triangular inequality: 
cij = |xi + (xk − xk) − xj| + |yi + (yk − yk) − yj| ≤ |xi − xk| + |xk − xj| + |yi − yk| + |yk −

yj| = cik + ckj ⇒ cij ≤ cik + ckj. 
Let δ(V) ⊆ AR represent the arcs with precisely one end point in V ⊂ NR, then δ(v) = δ({v}). 
The decision variable zij ∈ {0,1} is related to the arc (i, j) in the network GR (zij = zji), if 
zij = 1 it is determine to create an orthogonal path in the grid network G from i = (xi, yi) to 
j = (xj, yj). Consider the following formulation of the path TSP problem 
min∑  (i,j)∈AR cijzij  
s. t.
∑  (i,j)∈δ(s) zij = 1
∑  (i,j)∈δ(t) zij = 1
∑  (i,j)∈δ(i) zij = 2    ∀i ∈ NR\{s, t}
∑  (i,j)∈δ(V) zij = 2    ∀V ⊊ NR, |V ∩ {s, t}| ∈ {0,1}
zij ∈ {0,1}
By Held-Karp relaxation, the constrain of the decision variables is replaced with zij ≥ 0 [1,2].

3. CHRISTOFIDES’ HEURISTIC 

The Christofides’ algorithm [3] combine the minimum spanning tree T and the perfect matching 
M of odd-degree nodes; then, an Eulerian tour is determined and it is transformed into a 
Hamiltonian cycle. 
To adapt the Christofides’ heuristic with the Hamiltonian paths in the network, the union of the 
tree T and the matching M, there should exist exactly two nodes with odd degree. In addition, 
the predetermined source and destination nodes should be in the s − t path TSP. The following 
modifications of the Christofides’ heuristic require to obtain an Hamiltonian path [4]: 

• Construct a minimum spanning tree T of the graph G.
• First, determine the set S of vertices that are of wrong degree in T, i.e., the collection of

fixed endpoints of even degree and other vertices of odd degree. Next, construct a minimum
matching M on S that leaves 2 − k vertices exposed, where k is the number of fixed
endpoints. We note that such a matching can be found by constructing a minimum perfect
matching on S augmented with 2 − k dummy vertices in an obvious fashion.

• Consider the graph that is the union of T and M. This graph is connected and has either two
or zero odd-degree vertices. The latter case occurs only if there is a single fixed endpoint
that belongs to S and is left exposed by M; in this case, delete an arbitrary edge incident to
this vertex. Find an Eulerian path in the resulting graph. This path traverses each edge
exactly once and has the two odd-degree vertices as its endpoints.

• Transform the Eulerian path into a Hamiltonian path by applying shortcuts.
As an implementation of the Christofides’ algorithm for the grid networks, an example is 
considered in Figure 1. The example network is bounded by [-L,L]×[-L,L]; the source and 
destination nodes are located in (5,−7) and (−4,4) cordinations (red nodes in Figure 1), 
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respectively. The restricted nodes are determined by (1,−6), (−9,−9), (−1,9), (1,−1), 
(−1,−1), (−3,6), , respectively for nodes 2, 3, 4, 5, 6, 7. 

Figure 1. The example network in [-L,L]×[-L,L] 

A complete graph is constructed by the restricted nodes {2, 3, 4, 5, 6, 7} and the given source 
node 1 and the destination node 8; the arc lengths in the complete graph is as the shortest path 
lengths in the original grid network. The constructed complete graph for the example grid 
network is presented in Figure 2. 

Figure 2. The constructed complete network for the example grid network 

So, the spanning tree is computed in the complete graph by red colored arcs, where nodes 2, 3, 4 
(the nodes with odd degree other than the source and destination nodes), and node 8 (the 
destination node with even degree) are the wrong degree nodes. Then, the minimum matching 
between the wrong degree nodes are determined by the green arcs in Figure 2. 
The Eulerian path between nodes 1 and 8 (the source and destination nodes) is obtained as 
1-2-3-8-6-5-2-4-7-8. So, the shortcuts are implemented as follow:

i. the source node should be traversed initially,
ii. the destination node should be traversed as the last node,

iii. the other nodes should be traversed exactly once from the source node toward the
destination node.

Thus, the approximated solution is determined as 1-2-3-6-5-4-7-8 with the length 56, after the 
shortcuts. However, the optimal length is 54 for path 1-3-2-5-6-4-7-8, so the obtained 
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approximation ratio is 1.037. By transformation of the obtained approximated solution for the 
complete graph, the solution is determined for the grid network as shown in Figure 1. 

4. ROUTING WITH BLOCK OBSTACLES

Although the appearance of some obstacles in the grid network changes the topology of the 
network, the movements are done horizontally or vertically again. So, some obstacles are 
considered in the network that they are in the shape of rectangular. 

Theorem 1:  Any orthogonal path in the grid network without obstacle will be affected by the 
ratio 2L, and the approximation ratio is at most 4L. 

Proof: Consider there are some orthogonal paths between to coordination i=(xi,yi) and 
j=(xj,yj). Then, it is required exactly ∆xij = |xi − xj| horizontal and ∆yij = |yi − yj| vertical 
movements. Let ∆Xob and ∆Yob be the horizontal and vertical bounds of longitude and latitude 
for an obstacle ob. Then, for any xmin 

ob ≤xi≤xmax 
ob  and yi<ymin 

ob  or ymax 
ob >yi, and xmin 

ob ≤xj≤xmax 
ob  

and yj<ymin 
ob  or ymax 

ob >yj, necessarily ∆xij ≤ ∆Xob = xmax 
ob − xmin 

ob , and it is required at most 
∆Xob −  ∆xij horizontal movements in compare with the grid network without obstacles (see 
Figure 3).  

Figure 3. Horizontal movements in the grid network with an obstacle 

Similarly, for the vertical movements if ymin 
ob ≤yi≤ymax 

ob  and xi<xmin 
ob  or xmax 

ob >xi, and 
ymin 

ob ≤yj≤ymax 
ob  and xj<xmin 

ob  or xmax 
ob >xj, necessarily ∆yij ≤ ∆Yob = ymax 

ob − ymin 
ob , and it is 

required at most ∆Yob −  ∆yij vertical movements in compare with the grid network without 
obstacles. 
Thus, in the constructed complete network (without obstacle), ∆Xob<2L and ∆Yob<2L implies 
any arc cost cij will increase by 2L, cij 

ob ≤ 2L × cij, where cij 
ob is the required movements in the 

grid network with obstacles. Consequently, for the approximation solution, it is ∑  (i,j) cij 
obzij ≤

2L×∑  (i,j) cij zij. By the Christofides’ algorithm the approximation ratio is 4L.□ 
Now, the example grid network is barred by some obstacles as seen in Figure 4. There are some 
blocks in the network that affected the orthogonal paths and the routing process is done with 
respect to these three barriers.  

∆xij 

∆Xob 

∆Yob 
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Figure 4. The Grid Network with obstacles in [-L,L]×[-L,L] 

In this case, the complete network is constructed by non-Euclidian distances without 
considering obstacles as previously done, and by Euclidian distances that requires much more 
computational time (Figure 5). Thus, the Eulerian path between nodes 1 and 8 (the source and 
destination nodes) is obtained as 1-2-3-8-6-5-2-4-7-8, by previous settings (i, ii, iii). Then, for 
non-Euclidian distances, the approximated solution is determined as 1-2-3-6-5-4-7-8 with the 
length 56 after the shortcuts; and for Euclidian distances, the Eulerian path is 
1-2-3-1-5-6-8-4-7-8 and the approximated solution is 1-2-3-5-6-4-7-8 with the length 60 after
the shortcuts, and it is the optimal solution, too. By transformation of the obtained approximated
solution for the complete graph, the solution is determined for the grid network as shown in
Figure 4.

Figure 5. The constructed complete network for the example grid network with obstacles 

5. CONCLUSIONS

The well-known NP-hard travelling salesman problem was considered, and its much more 
difficult version that is called path TSP (or s-t TSP) was studied. According to many 
applications of the grid topology of the networks, the problem to find a Hamiltonian restricted 
shortest path in the grid network was introduced. Then, it was converted to a path TSP in the 
complete networks. So, the approximation algorithm based on the Christofides’ heuristic was 
applied to find a reasonable approximated solution in the complete network, and then it is 
converted to some horizontal and vertical paths in the grid networks. 
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ABSTRACT 
In this paper addresses a new scalarization technique for solving multiobjective optimization problems. 
Theorems are provided on the relation of (weakly, properly) efficient solutions of the multiobjective 
optimization problem and optimal solutions of the proposed scalarized problems. All the provided results 
are established with no convexity assumption. 

Keywords : Multiobjective optimization, proper efficiency, scalarization. 

1. INTRODUCTION

One part of mathematical programming is multiobjective optimization problem when the 
conflicting objective functions must be minimized or maximized over a feasible set of 
decisions. Since it is usually not possible to optimize the conflicting functions together, one can 
only hope to find a trade-off, or compromise, solution. The scalarized problem can then be 
solved by using standard single-objective optimization techniques. Therefore the scalarized 
problem can be solved by using standard single objective optimization techniques. 
There are many recent publications on applications of MOPs. 
Some of the parameter-based scalarization approaches that are widely employed including the 
weighted-sum method, the 𝜀𝜀-constraint method, the normal boundary method and the Pascolett–
Serafini method [5, 2-8, 10-12].  
Presented an extension of this approach and investigated the relations between approximate 
optimal solutions of the proposed method and 𝜀𝜀-properly efficient solutions. More recently, by 
including surplus variables in the constraints and penalizing the violations in the objective 
function of the Pascoletti–Serafini scalarization problem, Akbari et al. [1] presented the flexible 
Pascoletti–Serafini scalarization method. Moreover, by including slack variables in the 
constraints of the Pascoletti–Serafini scalarization problem, they obtained necessary and 
sufficient conditions for proper efficiency. 
Gaznavi et al. [9] presented an extension of this approach and investigated the relations between 
approximate optimal solutions of the proposed method and 𝜀𝜀-(properly, weakly) efficient 
solutions. 
The algorithm may solve some redundant PS problems and does not generate a well-spread 
distribution of non-dominated points in convex MOPs. Burachik et al. [2] proposed the 
weighted constraint method for solving bi-objective problems that may generate non-Pareto-
optimal solutions. 
Now, in the present paper, a flexible weighted-constraint scalarization technique, which is 
applicable for general multiobjective optimization problems is proposed. By this scalarization 
technique, easy-to-check statements for (weak, proper) efficiency are obtained. 
The remainder of this article is organized as follows. in Section 2 some basic definitions and 
preliminaries are provided. In Section 3, the suggested scalarization approach is described. 
In Section 4, relations between optimal solutions of the proposed approach and (weakly, 
properly) efficient solutions of the related MOP are investigated. The conclusions are derived in 
Section 7. 
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2. PRELIMINARIES

Let 𝑋𝑋 ⊆ ℝ𝑛𝑛 be a nonempty set and 𝑓𝑓:𝑋𝑋 → ℝ𝑝𝑝 with 𝑝𝑝 ≥ 2 be a vector-valued function. A 
multiobjective optimization problem may be written as 

𝑀𝑀𝑀𝑀𝑀𝑀: min 𝑓𝑓(𝑥𝑥) = (𝑓𝑓1(𝑥𝑥), … , 𝑓𝑓𝑝𝑝(𝑥𝑥)) 
𝑠𝑠. 𝑡𝑡. 𝑥𝑥 ∈ 𝑋𝑋. 

The set of all attainable outcomes, denoted by 𝑌𝑌, is defined as the image of 𝑋𝑋 under 𝑓𝑓. In fact, 
𝑌𝑌 =  𝑓𝑓 (𝑋𝑋)  =  {𝑦𝑦 ∈  ℝ𝑚𝑚 ∶  𝑦𝑦 =  𝑓𝑓 (𝑥𝑥) 𝑓𝑓𝑓𝑓𝑓𝑓 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑥𝑥 ∈  𝑋𝑋}. 
The natural ordering cone is defined as follows: 

ℝ≧
𝑝𝑝 = {𝑥𝑥 ∈ ℝ𝑝𝑝: 𝑥𝑥𝑖𝑖 ≥ 0, 𝑖𝑖 = 1, … , 𝑝𝑝}.

For any 𝑦𝑦,𝑦𝑦� ∈ ℝ𝑝𝑝: 
𝑦𝑦 < 𝑦𝑦� if and only if 𝑦𝑦𝑖𝑖 < 𝑦𝑦�𝑖𝑖  ∀𝑖𝑖 = 1, … ,𝑝𝑝, 
𝑦𝑦 ≦ 𝑦𝑦� if and only if 𝑦𝑦𝑖𝑖 ≤ 𝑦𝑦�𝑖𝑖  ∀𝑖𝑖 = 1, … ,𝑝𝑝, 
𝑦𝑦 ≤ 𝑦𝑦� if and only if 𝑦𝑦𝑖𝑖 ≤ 𝑦𝑦�𝑖𝑖  ∀𝑖𝑖 = 1, … ,𝑝𝑝 and 𝑦𝑦 ≠ 𝑦𝑦�. 

Definition 2.1 A feasible solution 𝑥𝑥� ∈ 𝑋𝑋 is called 
(i) an efficient (a Pareto optimal) solution of MOP, if there is no other 𝑥𝑥 ∈  𝑋𝑋 such that

𝑓𝑓(𝑥𝑥) ≤ 𝑓𝑓(𝑥𝑥�),
(ii) a weakly efficient solution of MOP, if there is no other 𝑥𝑥 ∈  𝑋𝑋 such that 𝑓𝑓(𝑥𝑥) < 𝑓𝑓(𝑥𝑥�),
(iii) a strictly efficient solution of MOP, if there is no other 𝑥𝑥 ∈  𝑋𝑋, 𝑥𝑥 ≠ 𝑥𝑥� such that 𝑓𝑓(𝑥𝑥) ≦

𝑓𝑓(𝑥𝑥�).

Definition 2.2: A feasible solution 𝑥𝑥� ∈ 𝑋𝑋 is called a properly efficient (a properly Pareto 
optimal) solution to MOP if it is efficient and there exists a real positive number 𝑀𝑀 such that for 
each 𝑖𝑖 ∈ {1, … ,𝑝𝑝} and each 𝑥𝑥 ∈ 𝑋𝑋 satisfying 𝑓𝑓𝑖𝑖(𝑥𝑥) < 𝑓𝑓𝑖𝑖(𝑥𝑥�), there exists an index 𝑗𝑗 ∈ {1, … ,𝑝𝑝} 
with 𝑓𝑓𝑗𝑗(𝑥𝑥�) < 𝑓𝑓𝑗𝑗(𝑥𝑥) such that 

𝑓𝑓𝑖𝑖(𝑥𝑥�) − 𝑓𝑓𝑖𝑖(𝑥𝑥)
𝑓𝑓𝑗𝑗(𝑥𝑥) − 𝑓𝑓𝑗𝑗(𝑥𝑥�) ≤ 𝑀𝑀. 

We denote the set of efficient, weakly efficient and properly efficient solutions by 𝑋𝑋𝐸𝐸, 𝑋𝑋𝑊𝑊𝑊𝑊  and 
𝑋𝑋𝑃𝑃𝑃𝑃, respectively. The images of efficient, weakly efficient and properly efficient solutions in 
the image space ℝ𝑝𝑝 are called nondominated, weakly nondominated and properly nondominated 
solutions and are denoted by 𝑌𝑌𝑁𝑁, 𝑌𝑌𝑊𝑊𝑊𝑊 and 𝑌𝑌𝑃𝑃𝑃𝑃, respectively. 

A single objective optimization problem is demonstrated as follows: 
SO: min𝑔𝑔(𝑥𝑥) 
𝑠𝑠. 𝑡𝑡. 𝑥𝑥 ∈ 𝑋𝑋, 

where 𝑔𝑔:𝑋𝑋 → ℝ. 

Definition 2.3 : A feasible solution 𝑥𝑥� ∈ 𝑋𝑋 is said to be 
(i) an optimal solution of Problem (SO), if 𝑔𝑔(𝑥𝑥�) ≤ 𝑔𝑔(𝑥𝑥) for all 𝑥𝑥 ∈ 𝑋𝑋,
(ii) a strictly optimal solution of Problem (SO), if 𝑔𝑔(𝑥𝑥�) < 𝑔𝑔(𝑥𝑥) for all 𝑥𝑥 ∈ 𝑋𝑋.

3. THE FLEXIBLE WEIGHTED-CONSTRAINT SCALARIZATION METHOD
Let be given parameters. Burachik et al. [2] proposed the following scalar optimization problem,
called the weighted-constraint technique for generate an approximation of the Pareto front in
multi-objective problem:

𝑃𝑃𝑤𝑤𝑘𝑘: min𝑤𝑤𝑘𝑘𝑓𝑓𝑘𝑘(𝑥𝑥) 
𝑠𝑠. 𝑡𝑡. 

𝑤𝑤𝑖𝑖𝑓𝑓𝑖𝑖(𝑥𝑥) ≤ 𝑤𝑤𝑘𝑘𝑓𝑓𝑘𝑘(𝑥𝑥),∀𝑖𝑖 ≠ 𝑘𝑘 
𝑥𝑥 ∈ 𝑋𝑋. 
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By the scalarized problem 𝑃𝑃𝑤𝑤𝑘𝑘, sufficient conditions for  (properly, weakly) efficient solutions of 
MOP cannot be obtained. Therefore, an extension of the direction scalarization problem 𝑃𝑃𝑤𝑤𝑘𝑘 is 
introduced. 
Let 𝑤𝑤 ∈ ℝ≧

𝑝𝑝  and ∑ 𝑤𝑤𝑖𝑖
𝑝𝑝
𝑖𝑖=1 = 1. The flexible weighted-constraint scalarization problem is

formulated as follows: 

𝐹𝐹𝐹𝐹𝐹𝐹: min𝑤𝑤𝑘𝑘𝑓𝑓𝑘𝑘(𝑥𝑥) + � 𝜇𝜇𝑖𝑖𝑠𝑠𝑖𝑖
𝑝𝑝

𝑖𝑖=1
𝑖𝑖≠𝑘𝑘

 

𝑠𝑠. 𝑡𝑡. 
𝑤𝑤𝑤𝑤(𝑥𝑥) − 𝑠𝑠 − max

𝑥𝑥∈𝑋𝑋
{𝑤𝑤𝑘𝑘𝑓𝑓𝑘𝑘(𝑥𝑥)} ∈ ℝ≧

𝑝𝑝 , 
𝑥𝑥 ∈ 𝑋𝑋, 𝑠𝑠 ∈ ℝ≧

𝑝𝑝 , 𝜇𝜇 ∈ ℝ≧
𝑝𝑝 ,

Where 𝜇𝜇𝑖𝑖 ≥ 0 are nonnegative weights. 

4. CHARACTERIZING (WEAKLY, PROPERLY) EFFICIENT SOLUTIONS

In this section, based on the scalarized problem (FWC), sufficient conditions for obtaining 
(weakly) efficient solutions and properly efficient solutions of the MOP are provided and 
necessary and sufficient conditions are obtained for efficient solutions. The following theorem 
provides a sufficient condition for weak efficiency utilizing the scalarized problem (FWC). 

Theorem 4.1 Let (𝑥𝑥�, 𝑠̂𝑠) be an optimal solution of the scalarized problem (FWC). If 𝜇𝜇 ≧ 0 and 
𝑤𝑤 ≧ 0 then 𝑥𝑥� is a weakly efficient solution of the MOP. 
Proof Suppose that 𝑥𝑥� is not weakly efficient. Then, there is some 𝑥𝑥 ∈ 𝑋𝑋 such that 𝑓𝑓𝑖𝑖(𝑥𝑥) <
𝑓𝑓𝑖𝑖(𝑥𝑥�),∀𝑖𝑖 = 1,2, … ,𝑝𝑝. Since 𝑤𝑤 ≧ 0, we can write 𝑤𝑤𝑖𝑖𝑓𝑓𝑖𝑖(𝑥𝑥) < 𝑤𝑤𝑖𝑖𝑓𝑓𝑖𝑖(𝑥𝑥�),∀𝑖𝑖 ≠ 𝑘𝑘. Since (𝑥𝑥�, 𝑠̂𝑠) is an 
optimal solution of (NM), then 𝑤𝑤𝑖𝑖𝑓𝑓𝑖𝑖(𝑥𝑥�) − 𝑠̂𝑠𝑖𝑖 ≤ max𝑥𝑥∈𝑋𝑋{𝑤𝑤𝑘𝑘𝑓𝑓𝑘𝑘(𝑥𝑥)},∀𝑖𝑖 ≠ 𝑘𝑘, so 𝑤𝑤𝑖𝑖𝑓𝑓𝑖𝑖(𝑥𝑥�) − 𝑠̂𝑠𝑖𝑖 ≤
max𝑥𝑥∈𝑋𝑋{𝑤𝑤𝑘𝑘𝑓𝑓𝑘𝑘(𝑥𝑥)},∀𝑖𝑖 ≠ 𝑘𝑘 then (𝑥𝑥, 𝑠̂𝑠) is feasible for (FWC) with an objective value that is 
smaller than that of (𝑥𝑥�, 𝑠̂𝑠). This contradicts the optimality of (𝑥𝑥�, 𝑠̂𝑠). 
Under the uniqueness assumption of the optimal solutions, the following stronger result is 
obtained for efficiency. 

Theorem 4.2 Let (𝑥𝑥�, 𝑠̂𝑠) be an optimal solution of the scalarized problem (FWC) with 𝜇𝜇 ≧ 0, 
𝑤𝑤 ≧ 0 and 𝑥𝑥� is unique, then 𝑥𝑥� is a strictly efficient solution of the MOP. 
Proof Assume that 𝑥𝑥 is such that 𝑓𝑓(𝑥𝑥) ≦ 𝑓𝑓(𝑥𝑥�). So, (𝑥𝑥, 𝑠̂𝑠) is a feasible solution of (FWC) with 
𝑤𝑤𝑘𝑘𝑓𝑓𝑘𝑘(𝑥𝑥) + ∑ 𝜇𝜇𝑖𝑖𝑠̂𝑠𝑖𝑖𝑖𝑖≠𝑘𝑘 ≤ 𝑤𝑤𝑘𝑘𝑓𝑓𝑘𝑘(𝑥𝑥�) + ∑ 𝜇𝜇𝑖𝑖𝑠̂𝑠𝑖𝑖𝑖𝑖≠𝑘𝑘 , uniqueness of the optimal solution implies that 
𝑥𝑥 = 𝑥𝑥�.Therefore 𝑥𝑥� is a strictly efficient solution of the MOP. 

In the following theorem, utilizing the scalarized problem (FWC), a sufficient condition is 
obtained for efficient solutions of the MOP. 

Theorem 43 Let (𝑥𝑥�, 𝑠̂𝑠) be an optimal solution of the scalarized problem (FWC). If 𝜇𝜇 > 0, 
𝑤𝑤 > 0 and 𝑠̂𝑠 > 0, then 𝑥𝑥� is an efficient solution of the MOP. 
Proof Suppose to the contrary that 𝑥𝑥� is not an efficient solution of the MOP. So, there exists a 
feasible solution 𝑥𝑥 ∈  𝑋𝑋 such that 

𝑓𝑓𝑖𝑖(𝑥𝑥) ≤ 𝑓𝑓𝑖𝑖(𝑥𝑥�),∀𝑖𝑖 = 1,2, … ,𝑝𝑝, 
and for some 𝑗𝑗 ∈ {1, … ,𝑝𝑝} 

𝑓𝑓𝑗𝑗(𝑥𝑥) < 𝑓𝑓𝑗𝑗(𝑥𝑥�). 
Therefore, we have 

𝑤𝑤𝑖𝑖𝑓𝑓𝑖𝑖(𝑥𝑥) − 𝑠̂𝑠𝑖𝑖 ≤ max
𝑥𝑥∈𝑋𝑋

{𝑤𝑤𝑘𝑘𝑓𝑓𝑘𝑘(𝑥𝑥)} ,∀𝑖𝑖 ≠ 𝑗𝑗, 𝑘𝑘, 
and 
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𝑤𝑤𝑗𝑗𝑓𝑓𝑗𝑗(𝑥𝑥) − 𝑠̂𝑠𝑗𝑗 < max
𝑥𝑥∈𝑋𝑋

{𝑤𝑤𝑘𝑘𝑓𝑓𝑘𝑘(𝑥𝑥)}. 
Without loss of generality, we can assume  𝑗𝑗 ≠ 𝑘𝑘, so we define 

𝑠𝑠𝑖𝑖 ≔ �
𝑠̂𝑠𝑖𝑖 − 𝛼𝛼 𝑖𝑖𝑖𝑖 𝑖𝑖 = 𝑗𝑗
𝑠̂𝑠𝑖𝑖 𝑖𝑖𝑖𝑖 𝑖𝑖 ≠ 𝑗𝑗 ,∀𝑖𝑖 ∈ {1, … ,𝑝𝑝} ∖ {𝑘𝑘}. 

Such that 𝑠̂𝑠𝑗𝑗 − 𝛼𝛼 > 0 and 𝑤𝑤𝑗𝑗𝑓𝑓𝑗𝑗(𝑥𝑥) − 𝑠̂𝑠𝑗𝑗 + 𝛼𝛼 ≤ max𝑥𝑥∈𝑋𝑋{𝑤𝑤𝑘𝑘𝑓𝑓𝑘𝑘(𝑥𝑥)}. Therefore, (𝑥𝑥, 𝑠𝑠) is feasible 
for (FWC) with 𝑤𝑤𝑘𝑘𝑓𝑓𝑘𝑘(𝑥𝑥) + ∑ 𝜇𝜇𝑖𝑖𝑠𝑠𝑖𝑖𝑖𝑖≠𝑘𝑘 ≤ 𝑤𝑤𝑘𝑘𝑓𝑓𝑘𝑘(𝑥𝑥�) + ∑ 𝜇𝜇𝑖𝑖𝑠̂𝑠𝑖𝑖𝑖𝑖≠𝑘𝑘 . This contradicts the optimality of 
(𝑥𝑥�, 𝑠̂𝑠). 
 
In the next theorem, the relationship between optimal solutions of the scalarized problem 
(FWC) and properly efficient solutions of the MOP is investigated. 
 
Theorem 4.4 Let 𝑥𝑥� be an efficient solution of the MOP. Then, there exist 𝜇𝜇 ≧ 0, 𝑤𝑤 ≧ 0 and 
𝑠̂𝑠 ≧ 0 such that (𝑥𝑥�, 𝑠̂𝑠) is an optimal solution (FWC) for all 𝑘𝑘 ∈ {1,2, … ,𝑝𝑝} and 𝑤𝑤𝑖𝑖𝑓𝑓𝑖𝑖(𝑥𝑥�) − 𝑠̂𝑠𝑖𝑖 =
max𝑥𝑥∈𝑋𝑋{𝑤𝑤𝑘𝑘𝑓𝑓𝑘𝑘(𝑥𝑥)} ,∀𝑖𝑖 ≠ 𝑘𝑘. 
Proof  Set 𝜇𝜇𝑖𝑖 = ∞,∀𝑖𝑖 ≠ 𝑘𝑘 and 𝑤𝑤 ≧ 0. Since 𝑤𝑤𝑗𝑗𝑓𝑓𝑗𝑗(𝑥𝑥�) − 𝑠̂𝑠𝑗𝑗 = max𝑥𝑥∈𝑋𝑋{𝑤𝑤𝑘𝑘𝑓𝑓𝑘𝑘(𝑥𝑥)} ,∀𝑖𝑖 ≠ 𝑘𝑘. So 
(𝑥𝑥�, 𝑠̂𝑠) is a feasible of (FWC). We claim that (𝑥𝑥�, 𝑠̂𝑠) is also an optimal solution of (FWC). Assume 
that there is a feasible solution (𝑥𝑥, 𝑠𝑠) for (FWC) with 𝜇𝜇𝑖𝑖 = ∞,∀𝑖𝑖 ≠ 𝑘𝑘 and 𝑤𝑤 ≧ 0 such that 

𝑤𝑤𝑘𝑘𝑓𝑓𝑘𝑘(𝑥𝑥�) + � 𝜇𝜇𝑖𝑖𝑠̂𝑠𝑖𝑖
𝑖𝑖≠𝑘𝑘

> 𝑤𝑤𝑘𝑘𝑓𝑓𝑘𝑘(𝑥𝑥) + � 𝜇𝜇𝑖𝑖𝑠𝑠𝑖𝑖
𝑖𝑖≠𝑘𝑘

, 

 

(1) 𝑓𝑓𝑘𝑘(𝑥𝑥) < 𝑓𝑓𝑘𝑘(𝑥𝑥�). 

Since (𝑥𝑥, 𝑠𝑠) is a feasible solution of (FWC), so we have 
𝑤𝑤𝑖𝑖𝑓𝑓𝑖𝑖(𝑥𝑥) − 𝑠𝑠𝑖𝑖 ≤ max

𝑥𝑥∈𝑋𝑋
{𝑤𝑤𝑘𝑘𝑓𝑓𝑘𝑘(𝑥𝑥)} = 𝑤𝑤𝑖𝑖𝑓𝑓𝑖𝑖(𝑥𝑥�) − 𝑠̂𝑠𝑖𝑖 ,∀𝑖𝑖 ≠ 𝑘𝑘 

𝑤𝑤𝑖𝑖𝑓𝑓𝑖𝑖(𝑥𝑥) ≤ 𝑤𝑤𝑖𝑖𝑓𝑓𝑖𝑖(𝑥𝑥�),∀𝑖𝑖 ≠ 𝑘𝑘 
Since 𝑤𝑤 > 0, we have 

(2) 𝑓𝑓𝑖𝑖(𝑥𝑥) ≤ 𝑓𝑓𝑖𝑖(𝑥𝑥�),∀𝑖𝑖 ≠ 𝑘𝑘 

According to relations (1) and (2) we have 
𝑓𝑓(𝑥𝑥) ≤ 𝑓𝑓(𝑥𝑥�), 

a contraction to 𝑥𝑥� being an efficient solution of the MOP. 
 
Next, we state an easy approach to check the sufficient condition for identifying properly 
efficient solutions among the solutions of (FWC). For the proof we need a technical lemma 
relating properly efficient solutions of the MOP with the feasible set of (FWC) and the set X, 
respectively. This lemma is very similar to the idea in Ehrgott and Ruzika (2008).  
 
Lemma 4.1 Let 𝑥𝑥� be a properly efficient solution of the MOP with feasible set 𝑋𝑋𝑀𝑀 =
{𝑥𝑥 ∈ 𝑋𝑋:𝑤𝑤𝑖𝑖𝑓𝑓𝑖𝑖(𝑥𝑥�) ≤ max𝑥𝑥∈𝑋𝑋{𝑤𝑤𝑘𝑘𝑓𝑓𝑘𝑘(𝑥𝑥)} ,∀𝑖𝑖 = 1, … , 𝑝𝑝}. Then 𝑥𝑥� is a properly efficient solution of 
the MOP with feasible set 𝑋𝑋. 
 
Proof Suppose that 𝑥𝑥� is not a properly efficient solution. Then consider a sequence {𝑀𝑀𝛼𝛼} with 
𝑀𝑀𝛼𝛼 > 0 and lim𝛼𝛼→∞𝑀𝑀𝛼𝛼 = ∞. 
For any 𝑀𝑀𝛼𝛼, there is 𝑥𝑥𝛼𝛼 ∈ 𝑋𝑋 and an index 𝑖𝑖 with 𝑓𝑓𝑖𝑖(𝑥𝑥𝛼𝛼) < 𝑓𝑓𝑖𝑖(𝑥𝑥�) such that for all 𝑗𝑗 ≠ 𝑖𝑖 with 
𝑓𝑓𝑗𝑗(𝑥𝑥�) < 𝑓𝑓𝑗𝑗(𝑥𝑥𝛼𝛼), we have  

(1) 𝑓𝑓𝑖𝑖(𝑥𝑥�) − 𝑓𝑓𝑖𝑖(𝑥𝑥𝛼𝛼)
𝑓𝑓𝑗𝑗(𝑥𝑥𝛼𝛼) − 𝑓𝑓𝑗𝑗(𝑥𝑥�) > 𝑀𝑀𝛼𝛼 . 
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We choose a subsequence of {𝑀𝑀𝛼𝛼} such that index 𝑖𝑖 is fixed for each 𝛼𝛼. We assume that for 
each 𝛼𝛼 𝐽𝐽 = �𝑗𝑗 ∈ {1, … , 𝑝𝑝}: 𝑓𝑓𝑗𝑗(𝑥𝑥�) < 𝑓𝑓𝑗𝑗(𝑥𝑥𝛼𝛼)� is constant. According to relation (1) and since 𝑓𝑓(𝑋𝑋) 
is bounded, we have 

lim
𝛼𝛼→∞

𝑓𝑓𝑗𝑗(𝑥𝑥𝛼𝛼) = 𝑓𝑓𝑗𝑗(𝑥𝑥�). 
So, there is 𝛼𝛼0 > 0 such that 

𝑤𝑤𝑗𝑗𝑓𝑓𝑗𝑗(𝑥𝑥𝛼𝛼) < max
𝑥𝑥∈𝑋𝑋

{𝑤𝑤𝑘𝑘𝑓𝑓𝑘𝑘(𝑥𝑥)} + 𝑠̂𝑠𝑗𝑗 ,∀𝛼𝛼 > 𝛼𝛼0,∀𝑗𝑗 ∈ 𝐽𝐽. 
Thus, {𝑥𝑥𝛼𝛼}𝛼𝛼>𝛼𝛼0 ⊆ 𝑋𝑋𝑀𝑀. This contradicts the proper efficiency of 𝑥𝑥� for the MOP with feasible set 
𝑋𝑋𝑀𝑀. 
 
Theorem 4.5 Let (𝑥𝑥�, 𝑠̂𝑠) be an optimal solution of the scalarized problem (FWC). If 𝜇𝜇 > 0, 
𝑤𝑤 > 0 and 𝑠̂𝑠 > 0, then 𝑥𝑥� is an properly efficient solution of the MOP. 
Proof According to Theorem 2.3 𝑥𝑥� is an efficient solution of the MOP for any 𝜇𝜇 > 0 and 𝑤𝑤 >
0. Since (𝑥𝑥�, 𝑠̂𝑠) is an optimal solution of the scalarized problem (FWC), we have  

𝑤𝑤𝑘𝑘𝑓𝑓𝑘𝑘(𝑥𝑥�) + � 𝜇𝜇𝑖𝑖𝑠̂𝑠𝑖𝑖
𝑖𝑖≠𝑘𝑘

= 𝑤𝑤𝑘𝑘𝑓𝑓𝑘𝑘(𝑥𝑥�) + � 𝜇𝜇𝑖𝑖(𝑤𝑤𝑖𝑖𝑓𝑓𝑖𝑖(𝑥𝑥�) − max
𝑥𝑥∈𝑋𝑋

{𝑤𝑤𝑘𝑘𝑓𝑓𝑘𝑘(𝑥𝑥)})
𝑖𝑖≠𝑘𝑘

. 

So, is an optimal solution of the weighted sum problem 

𝑚𝑚𝑚𝑚𝑚𝑚 �� 𝜇𝜇𝑖𝑖𝑤𝑤𝑖𝑖𝑓𝑓𝑖𝑖(𝑥𝑥�)
𝑝𝑝

𝑖𝑖=1
: 𝜇𝜇𝑖𝑖𝑤𝑤𝑖𝑖 = 1,𝑤𝑤𝑖𝑖𝑓𝑓𝑖𝑖(𝑥𝑥�) ≤ max

𝑥𝑥∈𝑋𝑋
{𝑤𝑤𝑘𝑘𝑓𝑓𝑘𝑘(𝑥𝑥)}�. 

According to Geoffrion's theorem, 𝑥𝑥� is a properly efficient solution of the MOP with additional 
constraints. By lemma 2.1 𝑥𝑥� is a properly efficient solution of the MOP.  
 
5. CONCLUSIONS 

We have proposed a new scalarization technique for solving multiobjective optimization has 
been proposed. Using the proposed approach, necessary and sufficient conditions for (weakly, 
properly) efficient solutions were established. 
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ABSTRACT 
In this paper radial basis function (RBF) collocation method is applied for the solution of the differential 
equation with variable coefficients and variable delays. It is shown the high accuracy and low 
computational cost of the method compared to some other numerical methods. The differential equation 
with variable coefficients and variable delays is transformed into a linear system of algebraic equations 
with the unknown coefficients and solved with a linear algebraic system solver. Some illustrative 
examples are also given to show the validity and applicability of this method. 
Keywords : Radial basis function, Collocation method, Variable delay, Variable coefficients. 
 

1. INTRODUCTION  

In this paper, we will give an efficient numerical scheme for the approximate solution of the 
following nonhomogeneous differential equation with variable coefficients and delays. Also, we 
will consider the error of approximation, by showing that, in comparison with other methods. 
𝑢𝑢′(𝑡𝑡) = 𝑏𝑏0(𝑡𝑡) + 𝑏𝑏1(𝑡𝑡)𝑢𝑢(𝑡𝑡) + ∑ 𝑏𝑏𝑗𝑗(𝑡𝑡)𝑢𝑢(𝑡𝑡 − 𝛿𝛿𝑗𝑗(𝑡𝑡))𝑚𝑚

𝑗𝑗=2 ,        𝑎𝑎 ≤ 𝑡𝑡 ≤ 𝑏𝑏                                      (1) 
𝑢𝑢(𝑡𝑡) = 𝛾𝛾(𝑡𝑡),        𝛼𝛼 ≤ 𝑡𝑡 ≤ 𝑎𝑎,                                                                                                        (2) 
where the coefficients 𝑏𝑏𝑗𝑗 and the delays 𝛿𝛿𝑗𝑗(𝑡𝑡) are given continuous functions for 𝑎𝑎 ≤ 𝑡𝑡 ≤ 𝑏𝑏 and 
𝛼𝛼 = 𝑖𝑖𝑖𝑖𝑖𝑖�𝑡𝑡 − 𝛿𝛿𝑗𝑗(𝑡𝑡)� for 𝑎𝑎 ≤ 𝑡𝑡 ≤ 𝑏𝑏. The asymptotic behavior of the solutions to a differential 
equation with variable delays is considered in [1-5]. But, most of the mentioned type delay 
differential equations have not analytical solutions; hence, numerical methods are needed to get 
approximate solutions. In [6], authors have solved (1)-(2) by using a novel matrix-collocation 
method based on Morgan-Voyce polynomials. In [7], the authors have used the method based 
on hybrid Taylor and Lucas polynomials to solve nonhomogeneous differential equation with 
variable coefficients and variable delays. In the following, we will show that problems (1)-(2) 
can be solved by using an original method, Multiquadric (MQ) radial basis collocation method, 
which is a combination of radial basis function and collocation methods. 
This paper is organized as follows. Preliminary concepts of the MQ radial basis function 
collocation method are given in Section 2. Section 3 focuses on the main results. Section 4 is 
devoted to the application of the RBF collocation method to a significant test problem. 
Conclusions are presented in Section 5. 
 
2. MQ-RBF  COLLOCATION  METHOD 

A radial basis function is a real-valued function whose value depends only on the distance from 
the origin that’s mean 𝜙𝜙(x) = 𝜙𝜙(∥x∥), or alternatively on the distance from some other point c, 
called a center, so that 𝜙𝜙(x, c) = 𝜙𝜙(∥x − c∥). Any function 𝜙𝜙 that satisfies this property is a 
radial function. The norm is usually Euclidean distance, although other distance functions are 
also possible. The basic RBF approximation is defined as: 
Definition: Given a function 𝜙𝜙(r), r ≥ 0, distinct centers {𝑥𝑥𝑖𝑖 ∈ Ω, 𝑖𝑖 = 1,2, … ,𝑁𝑁}, where Ω is a 
bounded domain in ℝ𝑑𝑑.Then, the basic interpolating RBF approximation takes the form: 
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𝑓𝑓(𝑥𝑥) = �𝜆𝜆𝑖𝑖𝜙𝜙(∥ x − 𝑥𝑥𝑖𝑖 ∥)
𝑁𝑁

𝑖𝑖=1

 

where 𝜆𝜆𝑖𝑖 are the set of unknown RBF coefficients to be determined. 
There are a large class of RBF. The basis function used by Hardy were the quadric surfaces is 
𝜙𝜙(𝑟𝑟; 𝑐𝑐) = √𝑐𝑐2 + 𝑟𝑟2,                                                                                                                    (3) 
in which c is a shape parameter. The RBF (3) is called the multiquadric or MQ-RBF. Now, we 
briefly introduce the RBFs collocation method. Let Ω ⊆ ℝ𝑑𝑑, consider the following boundary 
value problem 
𝐿𝐿𝐿𝐿 = 𝑓𝑓  𝑖𝑖𝑖𝑖  Ω                                                                                                                                (5) 
𝑢𝑢 = 𝑔𝑔  𝑜𝑜𝑜𝑜  𝜕𝜕Ω,                                                                                                                             (6) 
Where L is a linear differential operator and d is the dimension of the problem. For nonlinear 
operators. We distinguish in our notation centers 𝑋𝑋 = {𝑥𝑥1, … , 𝑥𝑥𝑁𝑁} and the collocation pointsΕ =
{𝛼𝛼1, … ,𝛼𝛼𝑁𝑁}. We seek the approximate solution of (5) in the following form 𝑢𝑢� = ∑ 𝜆𝜆𝑖𝑖𝜙𝜙𝑁𝑁

𝑖𝑖=1 (‖𝑥𝑥 −
𝑥𝑥𝑖𝑖‖),  where 𝜆𝜆𝑖𝑖’s coefficients to be determined by collocation, 𝜙𝜙 is a radial basis function, ‖. ‖ is 
the Euclidean norm and 𝑥𝑥𝑖𝑖 is a center of the radial basis function. Now, let Ε is divided into two 
subsets. One subset contains 𝑁𝑁𝐼𝐼 centers,𝛦𝛦1 where Eq. (5) is enforced and the other subset 
contains 𝑁𝑁𝐵𝐵 centers, 𝛦𝛦2, where boundary conditions are enforced. The collocation matrix that is 
obtained by matching the differential equation and the boundary condition at the collocation 
points has the following form: 

𝐴𝐴 = �𝐴𝐴𝐼𝐼𝐴𝐴𝐵𝐵
�, 

where 𝐴𝐴𝐼𝐼 = 𝐿𝐿𝐿𝐿(�𝛼𝛼 − 𝑥𝑥𝑗𝑗�)𝛼𝛼=𝛼𝛼𝑖𝑖,  𝛼𝛼𝑖𝑖𝜖𝜖𝐸𝐸1, 𝑥𝑥𝑗𝑗𝜖𝜖𝜖𝜖 and 𝐴𝐴𝐵𝐵 = 𝜙𝜙(�𝛼𝛼 − 𝑥𝑥𝑗𝑗�)𝛼𝛼=𝛼𝛼𝑖𝑖,  𝛼𝛼𝑖𝑖𝜖𝜖𝐸𝐸2, 𝑥𝑥𝑗𝑗𝜖𝜖𝜖𝜖. The 
unknown coefficients are 𝜆𝜆𝑖𝑖’s are determined by solving the linear system 𝐴𝐴𝐴𝐴 = 𝐹𝐹, where 𝐹𝐹 is a 
vector consisting  𝑓𝑓(𝛼𝛼𝑖𝑖), 𝛼𝛼𝑖𝑖𝜖𝜖𝐸𝐸1 and 𝑔𝑔(𝛼𝛼𝑖𝑖), 𝛼𝛼𝑖𝑖𝜖𝜖𝐸𝐸2. 
 
3. APPLICATION OF THE MQ-RBF COLLOCATION METHOD 

In this section, we are interested in solving nonhomogeneous differential equation with variable 
coefficients and delays (1)-(2) by the MQ-RBF collocation method. Without loss of generality, 
assume  
 
𝑡𝑡 − 𝛿𝛿𝑗𝑗(𝑡𝑡) ≤ 𝑎𝑎            𝑓𝑓𝑓𝑓𝑓𝑓   𝑗𝑗 = 2, … , 𝑘𝑘 
𝑡𝑡 − 𝛿𝛿𝑗𝑗(𝑡𝑡) > 𝑎𝑎            𝑓𝑓𝑓𝑓𝑓𝑓   𝑗𝑗 = 𝑘𝑘 + 1, … ,𝑚𝑚 
 
for 𝑎𝑎 ≤ 𝑡𝑡 ≤ 𝑏𝑏. So, we can rewrite equations (1)-(2) as follows: 
 
𝑢𝑢′(𝑡𝑡) − 𝑏𝑏1(𝑡𝑡)𝑢𝑢(𝑡𝑡) − ∑ 𝑏𝑏𝑗𝑗(𝑡𝑡)𝑢𝑢 �𝑡𝑡 − 𝛿𝛿𝑗𝑗(𝑡𝑡)�𝑚𝑚

𝑗𝑗=𝑘𝑘+1 = 𝑏𝑏0(𝑡𝑡) + ∑ 𝑏𝑏𝑗𝑗(𝑡𝑡)𝛾𝛾(𝑡𝑡 − 𝛿𝛿𝑗𝑗(𝑡𝑡))𝑘𝑘
𝑗𝑗=2 ,                (8)          

𝑢𝑢(𝑎𝑎) = 𝛾𝛾(𝑎𝑎),                                                                                                                                (9)  
                                                                                                 
Then, we choose N nodes 𝑡𝑡𝑖𝑖, i = 1,2,…,N in the interval [𝑎𝑎, 𝑏𝑏] where 𝑡𝑡1 = 𝑎𝑎 𝑎𝑎𝑎𝑎𝑎𝑎 𝑡𝑡𝑁𝑁 = 𝑏𝑏, now 
approximate the solution of equation (1) by 
 

𝑢𝑢𝑁𝑁 = ∑ 𝜆𝜆𝑗𝑗𝜙𝜙𝑁𝑁
𝑗𝑗=1 ��𝑡𝑡 − 𝑡𝑡𝑗𝑗��. 

 
So, we have  

𝑢𝑢�𝑡𝑡 − 𝛿𝛿𝑖𝑖(𝑡𝑡)� ≃�𝜆𝜆𝑗𝑗𝜙𝜙
𝑁𝑁

𝑗𝑗=1

��𝑡𝑡 − 𝛿𝛿𝑘𝑘(𝑡𝑡) − 𝑡𝑡𝑗𝑗��     𝑓𝑓𝑓𝑓𝑓𝑓  𝑖𝑖 = 2, … ,𝑚𝑚, 
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and 𝑢𝑢′(𝑡𝑡) ≃ ∑ 𝜆𝜆𝑗𝑗𝜙𝜙′𝑁𝑁
𝑗𝑗=1 ��𝑡𝑡 − 𝑡𝑡𝑗𝑗��. Using collocation method to ensure that the approximation 

satisfies in equations (8)-(9), one obtains the following linear system with unknown coefficients 
𝜆𝜆1, 𝜆𝜆2,…, 𝜆𝜆𝑁𝑁: 
 

ΦΛ = 𝐺𝐺, 
where Λ = [𝜆𝜆1, 𝜆𝜆2, … , 𝜆𝜆𝑁𝑁]𝑇𝑇 and 
 

Φ = �

𝜙𝜙(‖𝑡𝑡1 − 𝑡𝑡1‖)
𝜓𝜓(‖𝑡𝑡2 − 𝑡𝑡1‖)

⋮
𝜓𝜓(‖𝑡𝑡𝑁𝑁 − 𝑡𝑡1‖)

𝜙𝜙(‖𝑡𝑡1 − 𝑡𝑡2‖)
𝜓𝜓(‖𝑡𝑡2 − 𝑡𝑡2‖)

⋮
𝜓𝜓(‖𝑡𝑡𝑁𝑁 − 𝑡𝑡2‖)

⋯ 𝜙𝜙(‖𝑡𝑡1 − 𝑡𝑡𝑁𝑁‖)
⋯ 𝜓𝜓(‖𝑡𝑡2 − 𝑡𝑡𝑁𝑁‖)
⋯
…

⋮
𝜓𝜓(‖𝑡𝑡𝑁𝑁 − 𝑡𝑡𝑁𝑁‖)

� 

 
where 𝜓𝜓��𝑡𝑡 − 𝑡𝑡𝑗𝑗�� = 𝜑𝜑′��𝑡𝑡 − 𝑡𝑡𝑗𝑗�� − 𝑏𝑏1(𝑡𝑡)𝜑𝜑��𝑡𝑡 − 𝑡𝑡𝑗𝑗�� − ∑ 𝑏𝑏𝑠𝑠(𝑡𝑡)𝜑𝜑��𝑡𝑡 − 𝛿𝛿𝑠𝑠(𝑡𝑡) − 𝑡𝑡𝑗𝑗��𝑚𝑚

𝑠𝑠=𝑘𝑘+1  
for j=2,…, N, and 

𝐺𝐺 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡

𝛾𝛾(𝑡𝑡1)

𝑏𝑏0(𝑡𝑡2) + �𝑏𝑏𝑠𝑠(𝑡𝑡2)𝛾𝛾(𝑡𝑡2 − 𝛿𝛿𝑠𝑠(𝑡𝑡2))
𝑘𝑘

𝑠𝑠=2
⋮

𝑏𝑏0(𝑡𝑡𝑁𝑁) + �𝑏𝑏𝑠𝑠(𝑡𝑡𝑁𝑁)𝛾𝛾(𝑡𝑡𝑁𝑁 − 𝛿𝛿𝑠𝑠(𝑡𝑡𝑁𝑁))
𝑘𝑘

𝑠𝑠=2 ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

Then, this system must be solved to obtain the unknown coefficients. Hence, we have used the 
Gaussian elimination method to solve such a system. 
 
3. NUMERICAL RESULTS  

In this section, an example is given to demonstrate the accuracy and efficiency of the proposed 
method. We use N=15 random points and collocation centers. The shape Parameter is chosen 
c=𝑁𝑁

32
. At now, consider the following problem: 
𝑢𝑢′(𝑡𝑡) = (𝑡𝑡2 + 𝑡𝑡 − 1)𝑒𝑒−𝑡𝑡 − 𝑡𝑡 𝑢𝑢(𝑡𝑡 − ln(𝑡𝑡 + 1)) − 𝑒𝑒−𝑡𝑡2𝑢𝑢(𝑡𝑡 − 𝑡𝑡2) + 𝑢𝑢(𝑡𝑡),      0 ≤ 𝑡𝑡 ≤ 1 

Subject to the initial condition 𝑦𝑦(0) = 1. The exact solution of this equation is 𝑦𝑦(𝑡𝑡) = 𝑒𝑒−𝑡𝑡.  
 

 
Fig1: Comparison of the numerical and the exact solution  
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Fig2: Absolute value error for N=15 with random center 

 
 

Table 1- Comparison the absolute errors for the present 
method and method in [6] 

t This study Method in [6] 
0 0.2980 × 10−6 0 

0.1 0.1359× 10−5 1.91653× 10−3 
0.2 0.1352× 10−5 2.86131× 10−3 
0.3 0. 7122 × 10−7 3.19084× 10−3 
0.4 0.2083× 10−5 3.17959× 10−3 
0.5 0.1200× 10−5 3.02786× 10−3 
0.6 0.1541× 10−5 2.86876× 10−3 
0.7 0.1037× 10−5 2.77470× 10−3 
0.8 0.1331× 10−5 2.76306× 10−3 
0.9 0.0610× 10−5 2.80153× 10−3 
1 0.3745× 10−5 2.81276× 10−3 

 
 

4. CONCLUSIONS   

In the current paper, a numerical method based on the RBF collocation method for solving the 
differential equation with variable coefficients and variable delays is presented. Numerical 
results show that the present method has high accuracy. Furthermore, the implementation of the 
method is straightforward to code. In figures 1 we have plotted approximate solution and exact 
solution for an example. It is clear that the approximate solution by our proposed method 
coincides with the exact solution. Figures 2 show the absolute errors for this example. The 
obtained numerical results of presented example are compared with the method in [6], in table 
1.The results show that the MQ radial basis collocation method is an accurate method for 
solving the differential equation with variable coefficients and variable delays. 
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ABSTRACT 
Food is an essential component of today’s life, but the environment and the food security can be under 
threat by current consumption and production patterns. Therefore, dietary choices need to be reconsider. 
This paper addresses a novel application of a network design problem by considering sustainability issues. 
For this purpose, a multi-objective linear programming model proposed in order to design a food system 
with a sufficient dietary intake level. The first objective function aims to minimize total costs, the second 
objective function minimizes environmental impacts and the third one optimizes social impacts. Then, the 
proposed multi-objective is converted to a single-objective model by using LP-metric method and solved 
by LINGO software. Finally, a sensitivity analysis is done in some parameters of the proposed model and 
results are reported. 

Keywords : Sustainable supply chain, Food supply chain, Flexible robust optimization, Multi-objective 
programming 
 
1. INTRODUCTION  

Food does not only contribute to health and well-being but also plays a vital role in economic 
markets. Although food systems are far more resource dependent, our diet has significance for 
the environment via the amount of animal and plant products that we use Alder et al. [1]. Food 
systems account for approximately 24% of the greenhouse gas emissions, 33% of the soil 
degradation and also 60% of the terrestrial biodiversity loss UNEP [2], while the food and 
agriculture section is one of the most water and energy sectors demanding in Europe Maguire et 
al. [3]. Meat and dairy products have the highest contribution to environmental burdens 
Notarnicola et al. and Steinfeld et al. [4], [5]. An increasing population incorporate in 
unsustainable and wasteful food consumption, marked by overconsumption of meat and dairy 
products, exacerbate environmental threats in terms of global warming, resource depletion and 
endangered species UNEP [2]. Sustainable development by considering economic, 
environmental and social issues, receives increasing attention in the context of the food system. 
Although the food system is a dynamic network, various products and many processes, ranging 
from production processes to logistic and retail activities Trienekens et al. [6]. Moreover, 
globalization in the affected social systems, such as climate and geographical conditions affect 
the sustainable decision making in the food system. In terms of social perspective, health 
aspects and nutrition play an important role in the food system with the UN defining food 
security in sustainable development goals UN [7]. It is necessary to regard cost, nutritional and 
environmental aspects in order to make sustainable decisions in the design of food system. The 
remainder of this paper is organized as follows: in section 2, we define the problem and present 
a mathematical model. Section 3, gives the experimental results. Finally, in section 4, a 
discussion and some suggestions for future works are offered. 
 
2. PROBLEM DEFINITION 

In this study, a multi-objective linear programming model in the food system with dietary 
considerations is presented. This paper proposes an integrated approach, addressing the global 
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food system such as production, distribution and consumption activities. Each food chains start 
with agricultural production followed by transportation and processing of produce. 
Transportation can often be done by truck, freight ship and plane. The choice of available 
transport mode is a variable in the model. Figure (1) shows a generic representation of the food 
system from agricultural production to the nutritional contribution at consumer level by 
considering various sourcing locations, processing and product choices. The entire objective of 
the model optimizes the network design in terms of sourcing locations, transport modes and 
processing options and also the amount of products produced. 
 

 
Figure 1. Generic Food Network 

 

2.2. Sets and Indices 

𝐴𝐴 Set of locations indexed by i, j, l 
𝐶𝐶 Set of consumer locations (𝐶𝐶 ⊂ 𝐴𝐴) 
𝑆𝑆 Set of production locations (𝑆𝑆 ⊂ 𝐴𝐴) 
𝑃𝑃 Set of products indexed by 𝑝𝑝,q,r 
𝑃𝑃0 Set of processed products (𝑃𝑃0 ⊂ 𝑃𝑃) 
𝑚𝑚 Index for transport mode 
𝑛𝑛 Index for nutrient 
𝑓𝑓 Index for environmental indicator 
𝑘𝑘 Index for food category 
 
2.3. Parameters 

𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖 Cost of product 𝑝𝑝 in location 𝑖𝑖 ∈ 𝑆𝑆 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑘𝑘𝑘𝑘 
portion size at location 𝑖𝑖 ∈ 𝐶𝐶 related to 
food category 𝑘𝑘 

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑟𝑟𝑟𝑟 conversion factor from product 𝑟𝑟 to 
product 𝑝𝑝 𝐷𝐷𝑘𝑘𝑘𝑘 

demand for food category 𝑘𝑘 at location 
𝑖𝑖 ∈ 𝐶𝐶 

𝑟𝑟𝑟𝑟𝑟𝑟𝑝𝑝𝑝𝑝 ratio of by-product 𝑞𝑞 when 
producing product 𝑝𝑝 α share of food category demand 

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖 distance between 𝑖𝑖 and 𝑗𝑗 𝑏𝑏𝑝𝑝𝑝𝑝 = 1 if product 𝑝𝑝 is in food category 𝑘𝑘 
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𝑐𝑐𝑐𝑐𝑚𝑚 cost of transport for mode 𝑚𝑚 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = 1 if product 𝑟𝑟 is a resource for product 
𝑝𝑝 

𝑑𝑑𝑖𝑖𝑖𝑖 nutrient demand at location 𝑖𝑖 ∈ 𝐶𝐶 
for nutrient 𝑛𝑛 𝑉𝑉𝑉𝑉𝑖𝑖 

The number of variable job 
opportunities created at the production 
location 𝑖𝑖 ∈ 𝑆𝑆 

𝑎𝑎𝑝𝑝𝑝𝑝 nutrient content for nutrient 𝑛𝑛 in 
product 𝑝𝑝 𝐿𝐿𝐿𝐿𝑖𝑖 

The lost days cost from work’s damages 
at the production location 𝑖𝑖 ∈ 𝑆𝑆 

𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖 
environmental impact of product 𝑝𝑝 
at location 𝑖𝑖 ∈ 𝑆𝑆 for sustainability 
indicator 𝑓𝑓 

𝐸𝐸𝐿𝐿 
The weights given to the elements of 
social impacts objective: created job 
opportunities 

𝑒𝑒𝑒𝑒𝑚𝑚𝑚𝑚 
environmental impact of transport 
mode 𝑚𝑚 for sustainability indicator 
𝑓𝑓 

𝐸𝐸𝐷𝐷 
The weights given to the elements of 
social impacts objective: worker’s lost 
days, respectively 

𝑙𝑙𝑙𝑙𝑙𝑙𝑝𝑝𝑝𝑝 
= 1 if production of product 𝑝𝑝 is 
possible in location 𝑖𝑖 ∈ 𝑆𝑆   

 
2.4. Decision variables 

𝑥𝑥𝑖𝑖𝑖𝑖 The amount of product 𝑝𝑝 produced at 
production location 𝑖𝑖 ∈ 𝑆𝑆 𝑣𝑣𝑝𝑝𝑝𝑝𝑝𝑝 The amount of product 𝑟𝑟 needed at 

location 𝑖𝑖 ∈ 𝑆𝑆 to produce product 𝑝𝑝 
𝑧𝑧𝑖𝑖𝑖𝑖 The amount of product 𝑝𝑝 consumed 

at consumer location 𝑖𝑖 ∈ 𝐶𝐶 𝑤𝑤𝑖𝑖𝑖𝑖 The amount of product 𝑝𝑝 wasted at 
location 𝑖𝑖 ∈ 𝑆𝑆 

𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 
The amount of product 𝑝𝑝 transported 
from 𝑖𝑖 to 𝑗𝑗 with transport mode 𝑚𝑚 in 
the final transport stage 

𝑇𝑇𝑇𝑇𝑓𝑓 
 
Total environmental impact for 
indicator 𝑓𝑓 

𝑢𝑢𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 
The amount of product 𝑝𝑝 transported 
between production locations 𝑖𝑖 and 𝑗𝑗 
with transport mode 𝑚𝑚 

𝑇𝑇𝑇𝑇 Total cost 

 
2.5. Model formulation 

TC = ��� � 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖𝑐𝑐𝑐𝑐𝑚𝑚𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
𝑚𝑚∈𝑀𝑀𝑝𝑝∈𝑃𝑃𝑗𝑗∈𝐶𝐶𝑖𝑖∈𝑆𝑆

+ ��� � 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖𝑐𝑐𝑐𝑐𝑚𝑚𝑢𝑢𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
𝑚𝑚∈𝑀𝑀𝑝𝑝∈𝑃𝑃𝑗𝑗∈𝐶𝐶𝑖𝑖∈𝑆𝑆

+ ��𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖𝑥𝑥𝑖𝑖𝑖𝑖
𝑝𝑝∈𝑃𝑃𝑖𝑖∈𝑆𝑆

 (1) 

𝑇𝑇𝑇𝑇𝑓𝑓 = ��� � 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖𝑒𝑒𝑒𝑒𝑚𝑚𝑚𝑚𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
𝑚𝑚∈𝑀𝑀𝑝𝑝∈𝑃𝑃𝑗𝑗∈𝐶𝐶𝑖𝑖∈𝑆𝑆

+ ��� � 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖𝑒𝑒𝑒𝑒𝑚𝑚𝑚𝑚𝑢𝑢𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
𝑚𝑚∈𝑀𝑀𝑝𝑝∈𝑃𝑃𝑗𝑗∈𝑆𝑆𝑖𝑖∈𝑆𝑆

+ ��𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖
𝑝𝑝∈𝑃𝑃

𝑥𝑥𝑖𝑖𝑖𝑖
𝑖𝑖∈𝑆𝑆

 (2) 

𝑀𝑀𝑀𝑀𝑀𝑀 𝑍𝑍 = 𝐸𝐸𝐿𝐿 × ���𝑉𝑉𝑉𝑉𝑖𝑖 × 𝑥𝑥𝑖𝑖𝑖𝑖/𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖
𝑝𝑝∈𝑃𝑃𝑖𝑖∈𝑆𝑆

� − �𝐸𝐸𝐷𝐷 × ��𝐿𝐿𝐿𝐿𝑖𝑖 × 𝑥𝑥𝑖𝑖𝑖𝑖
𝑝𝑝∈𝑃𝑃𝑖𝑖∈𝑆𝑆

� (3) 

S.t. 
𝛼𝛼 𝐷𝐷𝑘𝑘𝑘𝑘 ≤ �𝑏𝑏𝑝𝑝𝑝𝑝𝑧𝑧𝑖𝑖𝑖𝑖

𝑝𝑝∈𝑃𝑃

 ∀𝑘𝑘 ∈ 𝐾𝐾; 𝑖𝑖 ∈ 𝐶𝐶 (4) 𝑣𝑣𝑝𝑝𝑝𝑝𝑝𝑝 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑟𝑟𝑟𝑟𝑥𝑥𝑖𝑖𝑖𝑖 ∀𝑝𝑝 ∈ 𝑃𝑃0; 𝑟𝑟 ∈ 𝑃𝑃; 𝑖𝑖 ∈ 𝑆𝑆 (9) 

𝑑𝑑𝑖𝑖𝑖𝑖 ≤ �𝑎𝑎𝑝𝑝𝑝𝑝𝑧𝑧𝑖𝑖𝑖𝑖
𝑝𝑝∈𝑃𝑃

 ∀𝑛𝑛 ∈ 𝑁𝑁; 𝑖𝑖 ∈ 𝐶𝐶 (5) 
�𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑣𝑣𝑝𝑝𝑝𝑝𝑝𝑝
𝑝𝑝∈𝑃𝑃

= � �𝑢𝑢𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
𝑖𝑖∈𝑆𝑆𝑚𝑚∈𝑀𝑀

 
∀𝑟𝑟 ∈ 𝑃𝑃; 𝑗𝑗 ∈ 𝑆𝑆 (10) 
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𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑘𝑘𝑘𝑘 ≥ �𝑏𝑏𝑝𝑝𝑝𝑝𝑧𝑧𝑖𝑖𝑖𝑖
𝑝𝑝∈𝑃𝑃

 ∀𝑘𝑘 ∈ 𝐾𝐾; 𝑖𝑖 ∈ 𝐶𝐶 (6) 

� �𝑢𝑢𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
𝑗𝑗∈𝑆𝑆𝑚𝑚∈𝑀𝑀

+ � �𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
𝑙𝑙∈𝐶𝐶𝑚𝑚∈𝑀𝑀

+ 𝑤𝑤𝑖𝑖𝑖𝑖 = 𝑥𝑥𝑖𝑖𝑖𝑖 

∀𝑝𝑝 ∈ 𝑃𝑃; 𝑖𝑖 ∈ 𝑆𝑆 (11) 

𝑧𝑧𝑗𝑗𝑗𝑗 ≤� � 𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
𝑚𝑚∈𝑀𝑀𝑖𝑖∈𝑆𝑆

 ∀𝑝𝑝 ∈ 𝑃𝑃; 𝑗𝑗 ∈ 𝐶𝐶 (7) 𝑥𝑥𝑖𝑖𝑖𝑖 = 𝑟𝑟𝑟𝑟𝑟𝑟𝑞𝑞𝑞𝑞𝑥𝑥𝑖𝑖𝑖𝑖 ∀𝑝𝑝 ∈ 𝑃𝑃; 𝑞𝑞 ∈ 𝑃𝑃; 𝑖𝑖 ∈ 𝑆𝑆 (12) 

� � 𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
𝑚𝑚∈𝑀𝑀𝑗𝑗∈𝐶𝐶

≤ 𝑥𝑥𝑖𝑖𝑖𝑖 ∀𝑝𝑝 ∈ 𝑃𝑃; 𝑖𝑖 ∈ 𝑆𝑆 (8)    

Equation (1) shows the first objective function that minimizes the total transportation and 
production costs for the network design problem. Expression (2) is the second objective 
function that minimizes the total environmental impact (e.g. land use, climate change, fossil fuel 
depletion, etc.). Equation (3) is the third objective function that maximizes the total social 
impacts including variable job opportunities for supply chain network. Variable jobs are those 
jobs that totally rely on the capacity of the facility.  
Constraint set (4) shows the demand determined by 𝛼𝛼, which controls the share of food 
category or  product demand in the proposed model. Constraint (5) imposes the 
nutrient demand. Constraint (6) limits the consumption of product categories 

constrained by portion sizes. Constraint (7) enforces that the quantity of consumed 
products has to be transported to the consumer. Constraint (8) guarantees that the 
amount of products transported to the consumer need to be less or equal to the 

quantity produced. Constraints (9) and (10) ensure that all the required resources 

which needed for production of a product are available at the production 

location. Constraint (11) illustrates that produced products need to be transported to 
where they are needed as resources or consumed and otherwise are classified as 

waste. Constraint (12) calculates the by-product that links the production of a 

product to its by-products. 

 

2.6. LP-metric method 

Since MILP model is a multi-objective, mixed integer Linear programming model whose 
objective functions are completely inconsistent, we used the LP-metrics method which is one of 
the famous Multi-Criteria Decision Making methods for solving multi-objective problems with 
conflicting objectives simultaneously. According to this method, a multi-objective problem is 
solved by considering each objective function separately and then a single objective is 
reformulated which aims to minimize the summation of normalized differences between each 
objective and the optimal values of them. In our proposed model, just you can assume that three 
objective functions are named as Z1, Z2, Z3. Based on LP-metrics method, MILP should be 
solved for each one of these three objectives separately Assume that the optimal values for these 
three problems are Z1

*, Z2
*, Z3

*. Now the LP-metrics objective functions can be formulated as 
follows: 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = 𝑤𝑤1 �
𝑍𝑍1 − 𝑍𝑍1∗

𝑍𝑍1∗
� + 𝑤𝑤2 �

𝑍𝑍2 − 𝑍𝑍2∗

𝑍𝑍2∗
� + 𝑤𝑤2 �

𝑍𝑍3∗ − 𝑍𝑍3
𝑍𝑍3∗

� (13) 

Where 0 ≤ 𝑤𝑤𝑖𝑖 ≤ 1, ∑𝑤𝑤𝑖𝑖 = 1 is the relative weight of components of the objective function 
(25) which given by the decision maker. Using LP-metrics objective function and considering 
MILP model constraints, we have a single objective mixed integer programming model, which 
can be efficiently solved by linear programming solvers. 
 
3. COMPUTATIONAL RESULTS 
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In this section, numerical experiments are conducted to investigate the performance of the 
proposed model. 
 
3.1 Report of results 

In this section results of solving problem in 5 test problem reported and analyzed. It should be 
noted that the necessary data is taken from the similar research in this field. Table 1 shows the 
results of experiments. 
 
T.P |𝑖𝑖| × |𝑐𝑐| × |𝑠𝑠| × |𝑝𝑝| × |𝑚𝑚| × |𝑛𝑛| × |𝑓𝑓| × |𝑘𝑘| F. O. V. S. O. V. T.O.V CPU 

1 |3| × |2| × |1| × |3| × |7| × |5| × |3| × |5| 4.6182 3.6944 5.875 1.8 
2 |3| × |3| × |1| × |1| × |7| × |4| × |3| × |5| 4.5501 3.2674 7.623 4.5 
3 |3| × |3| × |2| × |2| × |5| × |5| × |2| × |5| 5.7526 5.2231 5.742 5.2 
4 |5| × |1| × |2| × |2| × |5| × |3| × |2| × |3| 5.2385 4.2985 6.553 8 
5 |5| × |1| × |2| × |1| × |7| × |3| × |2| × |3| 6.1453 6.7852 8.597 10.5 

Table 1- Results of experiments 

Where in Table 1, T. P denotes the number of test problem, the second column shows the size of 
the problem, F. O. V. is the first objective function value, S. O. V. denotes the second objective 
function value, T.O.V. shows the third objective function value and last column showed 
computational times of solving model. The CPU times of the test problems illustrated in Fig. 2. 
As can be seen in Fig. 2 the CPU time of solving the model increased with increasing in size of 
the problem. 
 

 
                                                               Figure 2. CPU time of the problem 
 
3.2 Sensitivity analysis 
In this section the sensitivity of the first objective function on demand, production cost and 
transportation cost are examined. In table 3. the values of the first objective function in five 
different modes (Base case, -20%, -10%, +10% and +20%) are obtained and the sensitivity 
analysis results are illustrated. According to Fig. 3 with increasing the quantity of demand, the 
value of the first objective function increased. 
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                                                                            Figure 3. Demand 
 
According to Fig. 4 and Fig. 5 with increasing the quantity of production and transportation 
cost, the value of the first objective function increase.  
 

 
                                                               Figure 4. Production Cost 

 
                                                
                                                             Figure 5. Transportation Cost 
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4. CONCLUSIONS 

In this study, we have provided an integrated modelling approach for the food system by 
considering nutritional demand, optimizing both environmental and cost objective functions. 
While this research investigates three phases in the food system such as agricultural production, 
processing and transportation, the findings show that agricultural production is the essential 
contributor in the system. Moreover, the consumption patterns have an effect on the size of the 
system. Plant-base consumption needs less resource input from other supply chains. On the 
other hand, animal systems require more resource input. The findings also illustrate that the 
impact of transportation is of minor importance in these kind of systems. For future research, 
other social aspects for instance fair trade and animal welfare could be considered. In addition to 
this, the model could be extended by using stochastic or robust approaches for uncertainties in 
the data. 
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ABSTRACT 
Recently, a one-parameter extension of the Polak-Rebière-Polyak (PRP) conjugate gradient (CG) method 
has been suggested, having acceptable theoretical features and promising numerical behavior. Here, based 
on an eigenvalue analysis on the method in the sense of avoiding a search direction in the direction of the 
maximum magnification by a symmetric version of the search direction matrix, an adaptive formula for 
computing parameter of the method is proposed. Under standard assumptions, the given formula ensures 
the sufficient descent property and guarantees the global convergence of the method. Numerical 
experiments are done on a set of CUTEr test problems. They show practical effectiveness of the suggested 
formula for the parameter of the method.  
Keywords: Nonlinear programming, Unconstrained optimization, Conjugate gradient method, 
Maximum magnification, Line search. 
 
1. INTRODUCTION  

Generally, an unconstrained optimization problem can be formulated by 
min
𝑥𝑥∈ℝ𝑛𝑛

𝑓𝑓(𝑥𝑥),  
where 𝑓𝑓:ℝ𝑛𝑛 → ℝ is often a smooth nonlinear function whose gradient is denoted by 𝑔𝑔(𝑥𝑥). As 
an efficient class of methods for solving large-scale cases of the problem, in the CG algorithms 
a sequence of iterates is generated from a given starting point 𝑥𝑥0 ∈ ℝ𝑛𝑛 by the rule  

𝑥𝑥𝑘𝑘+1 = 𝑥𝑥𝑘𝑘 + 𝑠𝑠𝑘𝑘 , 𝑠𝑠𝑘𝑘 = 𝛼𝛼𝑘𝑘𝑑𝑑𝑘𝑘 , 𝑘𝑘 ≥ 0,  
in which 𝜶𝜶𝒌𝒌 > 𝟎𝟎 is a step length often determined by some inexact line search techniques along 
the direction 𝒅𝒅𝒌𝒌 calculated by 

𝑑𝑑0 = −𝑔𝑔0, 𝑑𝑑𝑘𝑘+1 = −𝑔𝑔𝑘𝑘+1 + 𝛽𝛽𝑘𝑘𝑑𝑑𝑘𝑘 , 𝑘𝑘 ≥ 0, (1.1) 
 
where 𝑔𝑔𝑘𝑘 = 𝑔𝑔(𝑥𝑥𝑘𝑘) and 𝛽𝛽𝑘𝑘 is a scalar called the CG (update) parameter [1]. Among the various 
classical CG techniques, the PRP method with 

𝛽𝛽𝑘𝑘𝑃𝑃𝑃𝑃𝑃𝑃 =
𝑔𝑔𝑘𝑘+1𝑇𝑇 𝑦𝑦𝑘𝑘
||𝑔𝑔𝑘𝑘||2

,  
 

in which 𝑦𝑦𝑘𝑘 = 𝑔𝑔𝑘𝑘+1 − 𝑔𝑔𝑘𝑘 and ||.|| denotes the ℓ2 norm, is regarded as a practically efficient 
method, especially because of performing automatic restarts when generating inappropriate 
search directions [2].  

In spite of computational merits of the PRP method, the method lacks the descent property even 
for uniformly convex objective functions [2]. So, investigating descent modifications of the 
PRP method has attracted special attentions. For example, Zhang et al. [3] suggested a three-
term extension of 𝛽𝛽𝑘𝑘𝑃𝑃𝑃𝑃𝑃𝑃 with the following search directions: 

𝑑𝑑0 = −𝑔𝑔0, 𝑑𝑑𝑘𝑘+1 = −𝑔𝑔𝑘𝑘+1 + 𝛽𝛽𝑘𝑘𝑃𝑃𝑃𝑃𝑃𝑃𝑑𝑑𝑘𝑘 −
𝑔𝑔𝑘𝑘+1𝑇𝑇 𝑑𝑑𝑘𝑘
||𝑔𝑔𝑘𝑘||2

𝑦𝑦𝑘𝑘 ,    𝑘𝑘 ≥ 0, 
 
(1.2) 
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for which the important sufficient descent condition holds. Also, Andrei [4] suggested a spectral 
PRP method with the following search directions: 

𝑑𝑑0 = −𝑔𝑔0, 𝑑𝑑𝑘𝑘+1 = −
𝑠𝑠𝑘𝑘𝑇𝑇𝑦𝑦𝑘𝑘

||𝑔𝑔𝑘𝑘||2
𝑔𝑔𝑘𝑘+1 + 𝛽𝛽𝑘𝑘𝑃𝑃𝑃𝑃𝑃𝑃𝑑𝑑𝑘𝑘 −

𝑔𝑔𝑘𝑘+1𝑇𝑇 𝑠𝑠𝑘𝑘
||𝑔𝑔𝑘𝑘||2

𝑦𝑦𝑘𝑘 ,    𝑘𝑘 ≥ 0, 
 
(1.3) 

which in addition to the sufficient descent condition, satisfies the following effective conjugacy 
condition suggested by Dai and Liao [5]: 

𝑑𝑑𝑘𝑘+1𝑇𝑇 𝑦𝑦𝑘𝑘 = −𝑡𝑡𝑔𝑔𝑘𝑘+1𝑇𝑇 𝑠𝑠𝑘𝑘 ,      

with the nonnegative parameter 𝑡𝑡 = ||𝑦𝑦𝑘𝑘||2

||𝑔𝑔𝑘𝑘||2
. Recently, Babaie-Kafaki and Ghanbari [6] proposed 

a class of one-parameter extension of the PRP method based the approach of Dai and Liao [5] as 
follows: 

𝛽𝛽𝑘𝑘𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 = 𝛽𝛽𝑘𝑘𝑃𝑃𝑃𝑃𝑃𝑃 − 𝑡𝑡
𝑔𝑔𝑘𝑘+1𝑇𝑇 𝑑𝑑𝑘𝑘
||𝑔𝑔𝑘𝑘||2

,    (1.4) 

where 𝒕𝒕 is a positive parameter. Then, to find an optimal choice for the parameter 𝒕𝒕, they noted 
that from (1.1) and (1.4) search directions of the EPRP method can be written as  

  𝑑𝑑𝑘𝑘+1 = −𝐻𝐻𝑘𝑘+1𝑔𝑔𝑘𝑘+1,   
where  

𝐻𝐻𝑘𝑘+1 = 𝐼𝐼 −
𝑑𝑑𝑘𝑘𝑦𝑦𝑘𝑘𝑇𝑇

||𝑔𝑔𝑘𝑘||2
+ 𝑡𝑡

𝑑𝑑𝑘𝑘𝑑𝑑𝑘𝑘𝑇𝑇

||𝑔𝑔𝑘𝑘||2
.  

 

Symmetrizing 𝑯𝑯𝒌𝒌+𝟏𝟏 by 

𝑃𝑃𝑘𝑘+1 =
𝐻𝐻𝑘𝑘+1 + 𝐻𝐻𝑘𝑘+1𝑇𝑇

2
= 𝐼𝐼 −

1
2
𝑑𝑑𝑘𝑘𝑦𝑦𝑘𝑘𝑇𝑇 + 𝑦𝑦𝑘𝑘𝑑𝑑𝑘𝑘𝑇𝑇

||𝑔𝑔𝑘𝑘||2
+ 𝑡𝑡

𝑑𝑑𝑘𝑘𝑑𝑑𝑘𝑘𝑇𝑇

||𝑔𝑔𝑘𝑘||2
,  (1.5) 

in light of an eigenvalue analysis the following family of two-parameter choices for 𝒕𝒕 has been 
suggested in [6]: 

𝑡𝑡𝑘𝑘
𝑝𝑝,𝑞𝑞 = 𝑝𝑝

||𝑦𝑦𝑘𝑘||2

||𝑔𝑔𝑘𝑘||2
+ 𝑞𝑞(

1
2

𝑑𝑑𝑘𝑘𝑇𝑇𝑦𝑦𝑘𝑘
�|𝑑𝑑𝑘𝑘|� �|𝑔𝑔𝑘𝑘|�

−
�|𝑔𝑔𝑘𝑘|�
�|𝑑𝑑𝑘𝑘|�

)2,  (1.6) 

with 𝒑𝒑 > 𝟏𝟏
𝟒𝟒
 and 𝒒𝒒 ≥ −𝟏𝟏, guaranteeing the descent condition. 

Following the mentioned attempts, here we deal with another choice for parameter of the 
EPRP method based on the concept of the maximum magnification by a matrix. This work is 
organized as follows. In Section 2, after conducting an eigenvalue analysis on the matrix 𝑃𝑃𝑘𝑘+1, 
we introduce our new formula for the parameter 𝑡𝑡 of the EPRP method. Also, we conduct a 
brief global convergence analysis. In Section 3, we make some competitive numerical 
experiments on a set of CUTEr test problems, using the Dolan-Moré performance profile. 
Finally, concluding remarks are given in Section 4. 
 

2. AN ADAPTIVE CHOICE FOR PARAMETER OF THE EXTENDED POLAK-RIBIÈR-POLYAK 
METHOD 

In this section, we carry out a brief eigenvalue analysis on the matrix 𝑃𝑃𝑘𝑘+1 in order to describe 
our approach for computing the parameter 𝑡𝑡 in (1.4). Hereafter, we assume that 𝑑𝑑𝑘𝑘𝑇𝑇𝑦𝑦𝑘𝑘 > 0, as 
guaranteed by the Wolfe line search conditions [1].  
Definition 2.1. [7] For an arbitrary matrix 𝐴𝐴 ∈ 𝑅𝑅𝑛𝑛×𝑛𝑛, the scalar 

maxmag(A) = max
𝑥𝑥≠0

||𝐴𝐴𝐴𝐴||
||𝑥𝑥||

, 
 

is called the maximum magnification by 𝐴𝐴. Hence, maxmag(A) = ||𝐴𝐴|| and also, the vector 
𝑥𝑥 ≠ 0 for which �|𝐴𝐴𝐴𝐴|� = �|𝐴𝐴|��|𝑥𝑥|�, is in the direction of the maximum magnification by the 
matrix 𝐴𝐴.  
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Firstly, note that the matrix 𝑃𝑃𝑘𝑘+1 given by (1.5) can be regarded as a symmetric 

approximation of the search direction matrix 𝐻𝐻𝑘𝑘+1. Based on the eigenvalue analysis carried out 
in [6], 𝑃𝑃𝑘𝑘+1 has 𝑛𝑛 − 2 eigenvalues being equal to 1 and two other eigenvalues namely 𝜆𝜆𝑘𝑘+ and 
𝜆𝜆𝑘𝑘−  given by 

𝜆𝜆𝑘𝑘∓ =
1
2
�2 −

𝑑𝑑𝑘𝑘𝑇𝑇𝑦𝑦𝑘𝑘
||𝑔𝑔𝑘𝑘||2

+ 𝑡𝑡
||𝑑𝑑𝑘𝑘||2

||𝑔𝑔𝑘𝑘||2
�

∓
1
2
�(𝑡𝑡

||𝑑𝑑𝑘𝑘||2

||𝑔𝑔𝑘𝑘||2
−

𝑑𝑑𝑘𝑘𝑇𝑇𝑦𝑦𝑘𝑘
||𝑔𝑔𝑘𝑘||2

)2 +
�|𝑑𝑑𝑘𝑘||2�|𝑦𝑦𝑘𝑘||2 − (𝑑𝑑𝑘𝑘𝑇𝑇𝑦𝑦𝑘𝑘)2

||𝑔𝑔𝑘𝑘||4
. 

 

It can be seen that with the choice (1.6) we have 0 < 𝜆𝜆𝑘𝑘− ≤ 1 ≤ 𝜆𝜆𝑘𝑘+, and 
consequently, �|𝑃𝑃𝑘𝑘+1|� = 𝜆𝜆𝑘𝑘+. Also, in light of similar analysis carried out in [8], the eigenvector 
of 𝑃𝑃𝑘𝑘+1 corresponding to 𝜆𝜆𝑘𝑘+, here called 𝑣𝑣1𝑘𝑘, can be written as 𝑣𝑣1𝑘𝑘 = 𝛾𝛾𝑑𝑑𝑘𝑘 + 𝜗𝜗𝑦𝑦𝑘𝑘  in which  

𝛾𝛾 =
2(1 − 𝜆𝜆𝑘𝑘+)||𝑔𝑔𝑘𝑘||2 − (𝑑𝑑𝑘𝑘𝑇𝑇𝑦𝑦𝑘𝑘)

||𝑑𝑑𝑘𝑘||2
𝜗𝜗. 

 

So, the vector 𝑣𝑣1𝑘𝑘 as the direction of the maximum magnification by 𝑃𝑃𝑘𝑘+1 is determined.  

As discussed in [8], when the gradient approximately lies in the direction of the maximum 
magnification by the matrix 𝐻𝐻𝑘𝑘+1, then the EPRP method may get into some computational 
errors as well as it may converge hardly. Based on this fact and since 𝑃𝑃𝑘𝑘+1 is a symmetric 
approximation of 𝐻𝐻𝑘𝑘+1, it can be stated that if the gradient 𝑔𝑔𝑘𝑘+1 is far from the direction of the 
maximum magnification by 𝑃𝑃𝑘𝑘+1 as much as possible, the probable errors may be reduced as 
well as the convergence may be acceptably accelerated. Hence, we derive a formula for the 
EPRP parameter by solving the following equation: 

𝑔𝑔𝑘𝑘+1𝑇𝑇 𝑣𝑣1𝑘𝑘 = 0,  
making 𝒗𝒗𝟏𝟏𝒌𝒌 to be orthogonal to 𝒈𝒈𝒌𝒌+𝟏𝟏. In this context, after some algebraic manipulations we get 

𝑡𝑡𝑘𝑘 =
||𝑦𝑦𝑘𝑘||2(𝑔𝑔𝑘𝑘+1𝑇𝑇 𝑑𝑑𝑘𝑘)2 − ||𝑑𝑑𝑘𝑘||2(𝑔𝑔𝑘𝑘+1𝑇𝑇 𝑦𝑦𝑘𝑘)2

2(𝑔𝑔𝑘𝑘+1𝑇𝑇 𝑑𝑑𝑘𝑘)((𝑑𝑑𝑘𝑘𝑇𝑇𝑦𝑦𝑘𝑘)(𝑔𝑔𝑘𝑘+1𝑇𝑇 𝑑𝑑𝑘𝑘) − ||𝑑𝑑𝑘𝑘||2(𝑔𝑔𝑘𝑘+1𝑇𝑇 𝑦𝑦𝑘𝑘))
. (2.1) 

Now, for sake of positiveness of the EPRP parameter and to achieve the sufficient descent 
property, we suggest the following modified version of (2.1): 

𝑡𝑡𝑘𝑘∗ =

⎩
⎪
⎨

⎪
⎧max �𝑡𝑡𝑘𝑘 ,

||𝑦𝑦𝑘𝑘||2

||𝑔𝑔𝑘𝑘||2
� ,         if denominator of tkis nonzero,

𝜗𝜗
||𝑦𝑦𝑘𝑘||2

||𝑔𝑔𝑘𝑘||2
,                                                   otherwise,

 (2.2) 

with the parameter 𝜗𝜗 > 1
4
.  

Under standard assumptions and using Theorem 2.1 of [6], it can be seen that the adaptive 
choice 𝑡𝑡 = 𝑡𝑡𝑘𝑘∗  given by (2.2) can guarantee global convergence of the EPRP method in the sense 
that lim𝑘𝑘→∞ |�𝑔𝑔𝑘𝑘�| = 0. 

 
3.  NUMERICAL EXPERIMENTS 

Here, we investigate computational efficiency of the EPRP method in which 𝒕𝒕 is computed by 
(1.6) with (𝒑𝒑,𝒒𝒒) = (𝟏𝟏,𝟎𝟎) and (2.2) with 𝝑𝝑 = 𝟎𝟎.𝟐𝟐𝟐𝟐; here the corresponding methods are 
respectively called EPRP1 and EPRP2, in contrast to the two other modified versions of the 
PRP method proposed in [3, 4] with the search directions (1.2) and (1.3), here respectively 
called ZZL and MPRP. We have implemented all the algorithms on a set of 45 test functions of 
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the CUTEr library [9] with 𝒏𝒏 ≥ 𝟓𝟓𝟓𝟓, applying MATLAB 7.7.0.471 (R2008b) installed on a 
computer Intel(R) Core(TM)2 Duo CPU 2.3 GHz with 8 GB of RAM and the Centos 6.2 server 
Linux operation system. 
In the line search procedure, the strong Wolfe conditions have been employed using Algorithm 
3.5 of [1] with the parameter choices given in [8]. The algorithms were stopped by reaching a 
maximum of 10000 iterations or achieving a solution with �|𝑔𝑔𝑘𝑘|� < 10−6(1 + |𝑓𝑓(𝑥𝑥𝑘𝑘)|). 
Efficiency of the algorithms were compared applying the performance profile proposed by 
Dolan and Moré [10] on the CPU time and the total number of function and gradient 
evaluations, following the notations of [8]. Results are shown by Figures 1 and 2.  
As the figures show, EPRP is preferable to the other methods. Especially, the results show that 
the choice (2.2) for the EPRP parameter is practically effective.   

 

 
Figure 1. Total number of function and gradient evaluations performance profile 

 

 
Figure 2. CPU time performance profile 

 
 
4. CONCLUSIONS  

Based on the concept of maximum magnification, we have conducted an eigenvalue analysis to 
suggest an optimal choice for parameter of the recently proposed EPRP method. The suggested 
formula guarantees sufficient descent property as well as global convergence of the method. 
Effect of the proposed formula has been numerically investigated in contrast to several other 
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modifications made on the classical PRP method. Results showed effectiveness of the suggested 
choice for the EPRP parameter.  
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ABSTRACT 
Precise, well-defined and deterministic data are the underpinning of conventional data envelopment 
analysis (DEA) models. However, a plethora of real-world applications includes uncertainty to some 
extent. Robust optimisation (RO) approaches have been used far and wide to cope with uncertain data in 
practical and engineering optimisation problems along with capturing more robust solutions against data 
fluctuations. In the existing literature, uncertain data are assumed to be independent. This paper adopts a 
RO approach under polyhedral uncertainty sets to develop a new robust DEA model which takes the 
correlation between the input and output data. As a consequence, it is envisaged that the price of 
robustness of DEA models decreases when there are significant correlations between the uncertain data.  
Keywords: Data envelopment analysis, Robust optimisation, Correlated polyhedral uncertainty set. 
 

1. INTRODUCTION 

Data envelopment analysis (DEA) is a linear programming (LP) approach for measuring the 
relative performance of decision-making units (DMUs) with multiple inputs and multiple 
outputs. DEA is known as a non-parametric methodology which does not require any prior 
assumption of the functional form of the input-output relationship. Charnes et al. [1] was the 
first study introducing a DEA model, called CCR model, to evaluate DMUs under constant 
returns to scale (CRS). Banker et al. [2] generalised the CCR’s idea to variable returns to scale 
(VRS). In traditional DEA models, input and output data are assumed to be known precisely 
while the uncertainty is an underpinned and inescapable feature of many real-world 
applications. There are various approaches in the DEA literature to combat the data uncertainty. 
We limit our focus on robust optimisation approaches and robust DEA models in turn. The 
robust optimisation (RO) approaches have been proposed to handle parameter uncertainty in 
classical mathematical programming problems. The RO approach aims to produce the robust 
solutions that are immunised the problem against the data uncertainties. The modelling of RO in 
DEA mainly follows three main approaches in the literature: the scenario-based approach [3], 
ellipsoidal uncertainty set approach [4], and polyhedral uncertainty set approach [5]. Due to the 
fact that Bertsimas and Sim [5]’s approach preserves the class of problems, it has been widely 
used in practice. To consider situations where uncertain parameters are correlated by several 
unknown sources, Jalilvand-nejad et al. [6] introduced a new polyhedral uncertainty in which its 
domain depends on the values of correlation matrix. Given the related literature, there are 
several studies on robust DEA (see e.g., [7], [8], [9], [10]). To the best of our knowledge, there 
is no study in DEA that considers the correlated uncertainty sets in input and output data using 
RO approaches. This lack motivates us to develop a robust DEA model based upon polyhedral 
uncertainty sets introduced in [6]. 
The rest of the paper organised as follows: Section 2 reviews basic DEA models. Section 3 
presents polyhedral uncertainty sets and its correlated case. Section 4 includes the mathematical 
details of the robust DEA model. In section 5 a numerical example is investigated to 
demonstrate the capabilities of robust DEA models and the last section concludes the paper.  
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2. BASIC DEA MODELS  

Assume that DMUj (𝑗𝑗 = 1, … ,𝑛𝑛) uses 𝑚𝑚 inputs 𝑥𝑥1𝑗𝑗 , … , 𝑥𝑥𝑚𝑚𝑚𝑚 for producing 𝑠𝑠 output 
𝑦𝑦(𝑚𝑚+1)𝑗𝑗 , … ,𝑦𝑦(𝑚𝑚+𝑠𝑠)𝑗𝑗. Let (𝑤𝑤1𝑗𝑗 , … ,𝑤𝑤𝑚𝑚𝑚𝑚 ,𝑤𝑤(𝑚𝑚+1)𝑗𝑗 , … ,𝑤𝑤(𝑚𝑚+𝑠𝑠)𝑗𝑗) be the corresponding inputs and 
outputs weights. The CCR model is formulated as follows: 
 

max ∑ 𝑤𝑤𝑖𝑖𝑦𝑦𝑖𝑖𝑖𝑖𝑚𝑚+𝑠𝑠
𝑖𝑖=𝑚𝑚+1    

 
(1) 

s. t.    ∑ 𝑤𝑤𝑖𝑖𝑥𝑥𝑖𝑖𝑖𝑖𝑚𝑚
𝑖𝑖=1 = 1, 

         ∑ 𝑤𝑤𝑖𝑖𝑦𝑦𝑖𝑖𝑖𝑖𝑚𝑚+𝑠𝑠
𝑖𝑖=𝑚𝑚+1 − ∑ 𝑤𝑤𝑖𝑖𝑥𝑥𝑖𝑖𝑖𝑖𝑚𝑚

𝑖𝑖=1 ≤ 0,   𝑗𝑗 = 1, … ,𝑛𝑛  

         𝑤𝑤𝑖𝑖 ≥ 0,      𝑖𝑖 = 1, … ,𝑚𝑚 + 𝑠𝑠, 
As discussed in [9] and [10], the appropriate DEA model for the RO analysis is the following 
model: 

max  𝑧𝑧   
 
 
 

(2) 

s. t.   𝑧𝑧 − ∑ 𝑤𝑤𝑖𝑖𝑦𝑦�𝑖𝑖𝑖𝑖𝑚𝑚+𝑠𝑠
𝑖𝑖=𝑚𝑚+1 ≤ 0 

        ∑ 𝑤𝑤𝑖𝑖𝑥𝑥�𝑖𝑖𝑖𝑖𝑚𝑚
𝑖𝑖=1 ≤ 1,  

        ∑ 𝑤𝑤𝑖𝑖𝑦𝑦�𝑖𝑖𝑖𝑖𝑚𝑚+𝑠𝑠
𝑖𝑖=𝑚𝑚+1 − ∑ 𝑤𝑤𝑖𝑖𝑥𝑥�𝑖𝑖𝑖𝑖𝑚𝑚

𝑖𝑖=1 ≤ 0,   𝑗𝑗 = 1, … ,𝑛𝑛  

        𝑤𝑤𝑖𝑖 ≥ 0,       𝑖𝑖 = 1, … ,𝑚𝑚 + 𝑠𝑠  
where 𝑥𝑥�𝑖𝑖𝑖𝑖 and 𝑦𝑦�𝑖𝑖𝑖𝑖 denotes the true values of the uncertain input and output data, respectively. 

3. PRELIMINARIES 

This section reviews the polyhedral uncertainty sets and correlated polyhedral uncertainty 
defined in [5, 6], respectively, and the robust counterpart of model (2) presented in [9, 10].  

3.1. Uncorrelated and correlated polyhedral uncertainty set 

Assume that the true values of the uncertain input and output data are expressed as 𝑥𝑥�𝑖𝑖𝑖𝑖 = 𝑥𝑥𝑖𝑖𝑖𝑖 +
𝜉𝜉𝑖𝑖𝑖𝑖
𝑥𝑥𝑥𝑥𝑥𝑥�𝑖𝑖𝑖𝑖 , 𝑖𝑖 = 1, … ,𝑚𝑚, 𝑗𝑗 = 1, … ,𝑛𝑛 and 𝑦𝑦�𝑖𝑖𝑖𝑖 = 𝑦𝑦𝑖𝑖𝑖𝑖 + 𝜉𝜉𝑖𝑖𝑖𝑖

𝑥𝑥𝑥𝑥𝑦𝑦�𝑖𝑖𝑖𝑖 , 𝑖𝑖 = 𝑚𝑚 + 1, … ,𝑚𝑚 + 𝑠𝑠, 𝑗𝑗 = 1, … ,𝑛𝑛 where 
the independent random variable 𝜉𝜉𝑖𝑖𝑖𝑖

𝑥𝑥𝑥𝑥 𝑖𝑖 = 1, … ,𝑚𝑚 + 𝑠𝑠  take values in the interval [-1, 1] and the 
maximum deviations are defined as 𝑥𝑥�𝑖𝑖𝑖𝑖 = 𝜀𝜀𝑥𝑥𝑖𝑖𝑖𝑖 and 𝑦𝑦�𝑖𝑖𝑖𝑖 = 𝜀𝜀𝑦𝑦�𝑖𝑖𝑖𝑖. Note that 𝜀𝜀 is the percentage of 
perturbation specifying the amount of deviation from the uncertain inputs and outputs data from 
their true values. For each input 𝑥𝑥𝑖𝑖𝑖𝑖 and output  𝑦𝑦𝑖𝑖𝑖𝑖, 𝑖𝑖 ∈ 𝐼𝐼𝑗𝑗, the true values are modelled as the 
variables 𝑥𝑥�𝑖𝑖𝑖𝑖 and 𝑦𝑦�𝑖𝑖𝑖𝑖 taking values in symmetric interval [𝑥𝑥𝑖𝑖𝑖𝑖 − 𝑥𝑥�𝑖𝑖𝑖𝑖 , 𝑥𝑥𝑖𝑖𝑖𝑖 + 𝑥𝑥�𝑖𝑖𝑖𝑖] and [𝑦𝑦𝑖𝑖𝑖𝑖 − 𝑦𝑦�𝑖𝑖𝑖𝑖 ,
𝑦𝑦𝑖𝑖𝑖𝑖 + 𝑦𝑦�𝑖𝑖𝑖𝑖], respectively, where 𝐼𝐼𝑗𝑗 represents the set of inputs and outputs of DMUs that are 
subject to uncertainty. Note that the total (scaled) deviations 𝜉𝜉𝑖𝑖𝑖𝑖

𝑥𝑥𝑥𝑥 = �𝑥𝑥�𝑖𝑖𝑖𝑖 − 𝑥𝑥𝑖𝑖𝑖𝑖� 𝑥𝑥�𝑖𝑖𝑖𝑖�  or �=
�𝑦𝑦�𝑖𝑖𝑖𝑖 − 𝑦𝑦𝑖𝑖𝑖𝑖� 𝑦𝑦�𝑖𝑖𝑖𝑖� � which are symmetrically bounded in the interval [-1, 1] and assume that values 
between 0 and 𝑚𝑚 + 𝑠𝑠 are restricted to the budget of uncertainty parameter 𝛤𝛤𝑗𝑗

𝑥𝑥𝑥𝑥�∈ �0, �𝐼𝐼𝑗𝑗���. 
Given 𝐼𝐼 = {1, … ,𝑚𝑚 + 𝑠𝑠}, �𝐼𝐼𝑗𝑗� = 𝑚𝑚 + 𝑠𝑠 and 𝛤𝛤𝑗𝑗

𝑥𝑥𝑥𝑥 can vary between 0 and 𝑚𝑚 + 𝑠𝑠. Moreover, 

∑ �𝜉𝜉𝑖𝑖𝑖𝑖
𝑥𝑥𝑥𝑥� ≤ 𝛤𝛤𝑗𝑗

𝑥𝑥𝑥𝑥
𝑖𝑖∈𝐼𝐼𝑗𝑗  and, resultantly, we have 

 
𝒰𝒰𝛤𝛤𝑗𝑗 = �𝑥𝑥�𝑖𝑖𝑖𝑖 = 𝑥𝑥𝑖𝑖𝑖𝑖 + 𝜉𝜉𝑖𝑖𝑖𝑖

𝑥𝑥𝑥𝑥𝑥𝑥�𝑖𝑖𝑖𝑖 ,𝑦𝑦�𝑖𝑖𝑖𝑖   =  𝑦𝑦𝑖𝑖𝑖𝑖 + 𝜉𝜉𝑖𝑖𝑖𝑖
𝑥𝑥𝑥𝑥𝑦𝑦�𝑖𝑖𝑖𝑖� ∑ �𝜉𝜉𝑖𝑖𝑖𝑖

𝑥𝑥𝑥𝑥�𝑚𝑚+𝑠𝑠
𝑖𝑖=1 ≤ 𝛤𝛤𝑗𝑗

𝑥𝑥𝑥𝑥, ∀𝑗𝑗�   (3) 

 
Notably, the level of 𝛤𝛤𝑗𝑗

𝑥𝑥𝑥𝑥 shows the robustness level associated with each perturbation in the 
constraints of the model. Alongside the aforesaid notations, the following correlated polyhedral 
uncertainty sets are used to construct the robust formulation [6]:  
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𝒰𝒰�𝛤𝛤𝑗𝑗

= �𝑥𝑥�𝑖𝑖𝑖𝑖 , 𝑦𝑦�𝑖𝑖𝑖𝑖� �𝜉𝜉𝑖𝑖𝑖𝑖
𝑥𝑥𝑥𝑥� + � ��1 − �

𝑛𝑛 − 𝛤𝛤𝑗𝑗
𝑥𝑥𝑥𝑥

𝑛𝑛 − 1
�  |𝜌𝜌𝑖𝑖𝑖𝑖𝑖𝑖|� �𝜉𝜉𝑘𝑘𝑘𝑘

𝑥𝑥𝑥𝑥��
𝑚𝑚+𝑠𝑠

𝑘𝑘=1
𝑘𝑘≠𝑖𝑖

≤ 𝛤𝛤𝑗𝑗
𝑥𝑥𝑥𝑥, 𝑖𝑖 = 1, … ,𝑚𝑚 + 𝑠𝑠, ∀𝑗𝑗� 

 
(4) 

where 𝜌𝜌𝑖𝑖𝑖𝑖𝑖𝑖 denotes the correlation between inputs/outputs which takes value in the range of [-1, 
1]. 

3.2. Robust DEA under polyhedral uncertainty sets  

Considering model (2) and the uncertain inputs  𝑥𝑥�𝑖𝑖𝑖𝑖 and uncertain outputs 𝑦𝑦�𝑖𝑖𝑖𝑖, the following 
model can be formulated: 

max 𝑧𝑧       
 
 

(5) 

s. t.    𝑧𝑧 − ∑ 𝑤𝑤𝑖𝑖𝑚𝑚+𝑠𝑠
𝑖𝑖=𝑚𝑚+1 𝑦𝑦𝑖𝑖𝑖𝑖 + max𝒰𝒰𝛤𝛤𝑜𝑜�∑ 𝑤𝑤𝑖𝑖𝜉𝜉𝑖𝑖𝑖𝑖

𝑥𝑥𝑥𝑥𝑦𝑦�𝑖𝑖𝑖𝑖𝑚𝑚+𝑠𝑠
𝑖𝑖=𝑚𝑚+1 �  ≤ 0, 

         ∑ 𝑤𝑤𝑖𝑖𝑚𝑚
𝑖𝑖=1 𝑥𝑥𝑖𝑖𝑖𝑖 + max𝒰𝒰𝛤𝛤𝑜𝑜�∑ 𝑤𝑤𝑖𝑖𝜉𝜉𝑖𝑖𝑖𝑖

𝑥𝑥𝑥𝑥𝑥𝑥�𝑖𝑖𝑖𝑖𝑚𝑚
𝑖𝑖=1 � ≤ 1, 

         ∑ 𝑤𝑤𝑖𝑖𝑦𝑦𝑖𝑖𝑖𝑖𝑚𝑚+𝑠𝑠
𝑖𝑖=𝑚𝑚+1 − ∑ 𝑤𝑤𝑖𝑖𝑥𝑥𝑖𝑖𝑖𝑖𝑚𝑚

𝑖𝑖=1 + max𝒰𝒰𝛤𝛤𝑗𝑗{∑ 𝑤𝑤𝑖𝑖𝜉𝜉𝑖𝑖𝑖𝑖
𝑥𝑥𝑥𝑥𝑥𝑥�𝑖𝑖𝑖𝑖𝑚𝑚

𝑖𝑖=1 + ∑ 𝑤𝑤𝑖𝑖𝜉𝜉𝑖𝑖𝑖𝑖
𝑥𝑥𝑥𝑥𝑦𝑦�𝑖𝑖𝑖𝑖𝑚𝑚+𝑠𝑠

𝑖𝑖=𝑚𝑚+1 } ≤ 0 
          𝑤𝑤𝑖𝑖 ≥ 0,   𝑖𝑖 = 1, … ,𝑚𝑚 + 𝑠𝑠  

where 𝒰𝒰𝛤𝛤𝑗𝑗 is defined in (3). Following [9] and [10], the robust counterpart of model (2) can be 
obtained as follows: 

max  𝑧𝑧   
 
 
 

(6) 

s. t.    𝑧𝑧 − ∑ 𝑤𝑤𝑖𝑖𝑚𝑚+𝑠𝑠
𝑖𝑖=𝑚𝑚+1 𝑦𝑦𝑖𝑖𝑖𝑖 + 𝛤𝛤𝑜𝑜

𝑦𝑦𝑝𝑝𝑜𝑜
𝑥𝑥𝑥𝑥 + ∑ 𝑞𝑞𝑖𝑖𝑖𝑖

𝑥𝑥𝑥𝑥𝑚𝑚+𝑠𝑠
𝑖𝑖=𝑚𝑚+1 ≤ 0, 

         ∑ 𝑤𝑤𝑖𝑖𝑚𝑚
𝑖𝑖=1 𝑥𝑥𝑖𝑖𝑖𝑖 + 𝛤𝛤𝑜𝑜𝑥𝑥𝑝𝑝𝑜𝑜

𝑥𝑥𝑥𝑥 + ∑ 𝑞𝑞𝑖𝑖𝑖𝑖
𝑥𝑥𝑥𝑥𝑚𝑚

𝑖𝑖=1 ≤  1,  
         ∑ 𝑤𝑤𝑖𝑖𝑦𝑦𝑖𝑖𝑖𝑖𝑚𝑚+𝑠𝑠

𝑖𝑖=𝑚𝑚+1 − ∑ 𝑤𝑤𝑖𝑖𝑥𝑥𝑖𝑖𝑖𝑖𝑚𝑚
𝑖𝑖=1 + 𝛤𝛤𝑗𝑗

𝑥𝑥𝑥𝑥𝑝𝑝𝑗𝑗
𝑥𝑥𝑥𝑥 + ∑ 𝑞𝑞𝑖𝑖𝑖𝑖

𝑥𝑥𝑥𝑥𝑚𝑚+𝑠𝑠
𝑖𝑖=1 ≤ 0,   𝑗𝑗 = 1, … ,𝑛𝑛 

         𝑝𝑝𝑗𝑗
𝑥𝑥𝑥𝑥 + 𝑞𝑞𝑖𝑖𝑖𝑖

𝑥𝑥𝑥𝑥 ≥ 𝑥𝑥�𝑖𝑖𝑖𝑖  𝑤𝑤𝑖𝑖 ,    𝑖𝑖 = 1, … ,𝑚𝑚, 𝑗𝑗 = 1, … ,𝑛𝑛 
         𝑝𝑝𝑗𝑗

𝑥𝑥𝑥𝑥 + 𝑞𝑞𝑖𝑖𝑖𝑖
𝑥𝑥𝑥𝑥 ≥ 𝑦𝑦�𝑟𝑟𝑟𝑟  𝑤𝑤𝑖𝑖 ,   𝑖𝑖 = 𝑚𝑚 + 1, … ,𝑚𝑚 + 𝑠𝑠, 𝑗𝑗 = 1, … ,𝑛𝑛 

         𝑝𝑝𝑖𝑖𝑖𝑖
𝑥𝑥𝑥𝑥,𝑞𝑞𝑖𝑖𝑖𝑖𝑥𝑥 ,𝑤𝑤𝑖𝑖 ≥ 0, 𝑖𝑖 = 1, . , , ,𝑚𝑚 + 𝑠𝑠, 𝑗𝑗 = 1, … ,𝑛𝑛 

 

4. Developed robust correlated DEA 

In the view of model (2) and the aim of robust optimisation which is maximising the objective 
function value with respect to the worst case of perturbations under the selected uncertainty set, 
we arrive at the following non-linear model: 

max  𝑧𝑧   
 
 

(7) 

s. t.    𝑧𝑧 − ∑ 𝑤𝑤𝑖𝑖𝑚𝑚+𝑠𝑠
𝑖𝑖=𝑚𝑚+1 𝑦𝑦𝑖𝑖𝑖𝑖 + max 𝒰𝒰�𝛤𝛤𝑜𝑜

�∑ 𝑤𝑤𝑖𝑖𝜉𝜉𝑖𝑖𝑖𝑖
𝑥𝑥𝑥𝑥𝑦𝑦�𝑖𝑖𝑖𝑖𝑚𝑚+𝑠𝑠

𝑖𝑖=𝑚𝑚+1 �  ≤ 0, 

         ∑ 𝑤𝑤𝑖𝑖𝑚𝑚
𝑖𝑖=1 𝑥𝑥𝑖𝑖𝑖𝑖 + max𝒰𝒰�𝛤𝛤𝑜𝑜�∑ 𝑤𝑤𝑖𝑖𝜉𝜉𝑖𝑖𝑖𝑖

𝑥𝑥𝑥𝑥𝑥𝑥�𝑖𝑖𝑖𝑖𝑚𝑚
𝑖𝑖=1 � ≤ 1,  

         ∑ 𝑤𝑤𝑖𝑖𝑦𝑦𝑖𝑖𝑖𝑖𝑚𝑚+𝑠𝑠
𝑖𝑖=𝑚𝑚+1 − ∑ 𝑤𝑤𝑖𝑖𝑥𝑥𝑖𝑖𝑖𝑖𝑚𝑚

𝑖𝑖=1 + max𝒰𝒰�𝛤𝛤𝑗𝑗{∑ 𝑤𝑤𝑖𝑖𝜉𝜉𝑖𝑖𝑖𝑖
𝑥𝑥𝑥𝑥𝑥𝑥�𝑖𝑖𝑖𝑖𝑚𝑚

𝑖𝑖=1 + ∑ 𝑤𝑤𝑖𝑖𝜉𝜉𝑖𝑖𝑖𝑖
𝑥𝑥𝑥𝑥𝑦𝑦�𝑖𝑖𝑖𝑖𝑚𝑚+𝑠𝑠

𝑖𝑖=𝑚𝑚+1 } ≤ 0  

         𝑤𝑤𝑖𝑖 ≥ 0,   𝑖𝑖 = 1, … ,𝑚𝑚 + 𝑠𝑠 
where 𝒰𝒰�𝛤𝛤𝑗𝑗 ,∀𝑗𝑗 is presented in (4). In model (7), the protection function of the 𝑗𝑗th constraint is 
defined as 𝛽𝛽𝑗𝑗(𝑤𝑤∗,𝛤𝛤𝑗𝑗

𝑥𝑥𝑥𝑥) = max𝒰𝒰�𝛤𝛤𝑗𝑗{∑ 𝑤𝑤𝑖𝑖𝜉𝜉𝑖𝑖𝑖𝑖
𝑥𝑥𝑥𝑥𝑥𝑥�𝑖𝑖𝑖𝑖𝑚𝑚

𝑖𝑖=1 + ∑ 𝑤𝑤𝑖𝑖𝜉𝜉𝑖𝑖𝑖𝑖
𝑥𝑥𝑥𝑥𝑦𝑦�𝑖𝑖𝑖𝑖𝑚𝑚+𝑠𝑠

𝑖𝑖=𝑚𝑚+1 } that can be formulated as the 
following LP problem: 

max  ∑ |𝑤𝑤𝑖𝑖|𝜉𝜉𝑖𝑖𝑖𝑖
𝑥𝑥𝑥𝑥𝑥𝑥�𝑖𝑖𝑖𝑖𝑚𝑚

𝑖𝑖=1 + ∑ |𝑤𝑤𝑖𝑖|𝜉𝜉𝑖𝑖𝑖𝑖
𝑥𝑥𝑥𝑥𝑦𝑦�𝑖𝑖𝑖𝑖𝑚𝑚+𝑠𝑠

𝑖𝑖=𝑚𝑚+1    
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s. t.    𝜉𝜉𝑖𝑖𝑖𝑖
𝑥𝑥𝑥𝑥 + ∑ [(1 − (

𝑛𝑛−𝛤𝛤𝑗𝑗
𝑥𝑥𝑥𝑥

𝑛𝑛−1
) |𝜌𝜌𝑖𝑖𝑖𝑖𝑖𝑖|)𝜉𝜉𝑘𝑘𝑘𝑘

𝑥𝑥𝑥𝑥]𝑚𝑚+𝑠𝑠
𝑘𝑘=1
𝑘𝑘≠𝑖𝑖

≤ 𝛤𝛤𝑗𝑗
𝑥𝑥𝑥𝑥       𝑖𝑖 = 1, … ,𝑚𝑚 + 𝑠𝑠 

 
(8) 

         0 ≤ 𝜁𝜁𝑖𝑖𝑖𝑖
𝑥𝑥𝑥𝑥 ≤ 1,                   ∀𝑖𝑖, 𝑗𝑗  

 

The dual problem of (8) and the non-linear model (7) enable us to reach the following model: 

max  𝑧𝑧   
 
 
 
 

(9) 

s. t.    𝑧𝑧 − ∑ 𝑤𝑤𝑖𝑖𝑚𝑚+𝑠𝑠
𝑖𝑖=𝑚𝑚+1 𝑦𝑦𝑟𝑟𝑟𝑟 + 𝛤𝛤𝑜𝑜

𝑦𝑦 ∑ 𝑝𝑝𝑖𝑖𝑖𝑖
𝑥𝑥𝑥𝑥𝑚𝑚+𝑠𝑠

𝑖𝑖=𝑚𝑚+1 + ∑ 𝑞𝑞𝑖𝑖𝑖𝑖
𝑥𝑥𝑥𝑥𝑚𝑚+𝑠𝑠

𝑖𝑖=𝑚𝑚+1 ≤ 0, 
         ∑ 𝑤𝑤𝑖𝑖𝑚𝑚

𝑖𝑖=1 𝑥𝑥𝑖𝑖𝑖𝑖 + 𝛤𝛤𝑜𝑜𝑥𝑥 ∑ 𝑝𝑝𝑖𝑖𝑖𝑖
𝑥𝑥𝑥𝑥𝑚𝑚

𝑖𝑖=1 + ∑ 𝑞𝑞𝑖𝑖𝑖𝑖
𝑥𝑥𝑥𝑥𝑚𝑚

𝑖𝑖=1 ≤  1,  
         ∑ 𝑤𝑤𝑖𝑖𝑦𝑦𝑖𝑖𝑖𝑖𝑚𝑚+𝑠𝑠

𝑖𝑖=𝑚𝑚+1 − ∑ 𝑤𝑤𝑖𝑖𝑥𝑥𝑖𝑖𝑖𝑖 + ∑ 𝛤𝛤𝑗𝑗
𝑥𝑥𝑥𝑥𝑝𝑝𝑖𝑖𝑖𝑖

𝑥𝑥𝑥𝑥𝑚𝑚+𝑠𝑠
𝑖𝑖=1

𝑚𝑚
𝑖𝑖=1 + ∑ 𝑞𝑞𝑖𝑖𝑖𝑖

𝑥𝑥𝑥𝑥𝑚𝑚+𝑠𝑠
𝑖𝑖=1 ≤ 0,   𝑗𝑗 = 1, … ,𝑛𝑛,  

         𝑝𝑝𝑖𝑖𝑖𝑖
𝑥𝑥𝑥𝑥 + ∑ (1 − (

𝑛𝑛−𝛤𝛤𝑗𝑗
𝑥𝑥𝑥𝑥

𝑛𝑛−1
)|𝜌𝜌𝑖𝑖𝑖𝑖𝑖𝑖|)𝑚𝑚+𝑠𝑠

𝑘𝑘=1
𝑘𝑘≠𝑖𝑖

 𝑝𝑝𝑖𝑖𝑖𝑖
𝑥𝑥𝑥𝑥 + 𝑞𝑞𝑖𝑖𝑗𝑗

𝑥𝑥𝑥𝑥 ≥ 𝑥𝑥�𝑖𝑖𝑖𝑖  𝑤𝑤𝑖𝑖 ,        𝑖𝑖 = 1, … ,𝑚𝑚,   𝑗𝑗 = 1, … ,𝑛𝑛, 

         𝑝𝑝𝑖𝑖𝑖𝑖
𝑥𝑥𝑥𝑥 + ∑ (1 − (

𝑛𝑛−𝛤𝛤𝑗𝑗
𝑥𝑥𝑥𝑥

𝑛𝑛−1
)|𝜌𝜌𝑖𝑖𝑖𝑖𝑖𝑖|)𝑚𝑚+𝑠𝑠

𝑘𝑘=1
𝑘𝑘≠𝑖𝑖

 𝑝𝑝𝑖𝑖𝑖𝑖
𝑥𝑥𝑥𝑥 + 𝑞𝑞𝑖𝑖𝑖𝑖

𝑥𝑥𝑥𝑥 ≥ 𝑦𝑦�𝑖𝑖𝑖𝑖  𝑤𝑤𝑖𝑖 ,       𝑖𝑖 = 𝑚𝑚 + 1, … ,𝑚𝑚 + 𝑠𝑠, ∀𝑗𝑗 

         𝑞𝑞𝑖𝑖𝑖𝑖
𝑥𝑥𝑥𝑥,𝑝𝑝𝑖𝑖𝑖𝑖

𝑥𝑥𝑥𝑥, 𝑤𝑤𝑖𝑖 ≥ 0            𝑖𝑖 = 1, … ,𝑚𝑚 + 𝑠𝑠, 𝑗𝑗 = 1, … ,𝑛𝑛.  
 

In the above model, if 𝜌𝜌𝑖𝑖𝑖𝑖𝑖𝑖 = 0 (for all 𝑖𝑖, 𝑗𝑗 and 𝑘𝑘 ≠ 𝑗𝑗), then it is equivalent to the uncorrelated 

robust DEA model (6). Noticeably, the coefficient (1 − (
𝑛𝑛−𝛤𝛤𝑗𝑗

𝑥𝑥𝑥𝑥

𝑛𝑛−1
)|𝜌𝜌𝑖𝑖𝑖𝑖𝑖𝑖|) in model (9) controls the 

amount of data perturbations when the data perturb jointly. Therefore, the rise in |𝜌𝜌𝑖𝑖𝑖𝑖𝑖𝑖| leads in 
the increase in the amount of perturbations.  

5. Numerical example 

We here present a small example to demonstrate the capabilities of the proposed model (9). The 
data set is taken from [9] in which there are 17 DMUs and each DMU uses four inputs to 
produce three outputs. The second column of Table 1 shows the efficiency scores obtained from 
the CCR model (1). The columns 3-6 of Table 1 demonstrate the obtained results of robust CCR 
(R-CCR) model (6) and robust correlated CCR (RC-CCR) model (9) for 𝜌𝜌 ∈ {0.5, 0.75, 0.95}. 
Note that it is assumed that there is 5% perturbation in all input and output data. 
 
Table 1. Comparing robust DEA models and their price of robustness 

DMUs  CCR  R-CCR (%) RC-CCR (%) RC-CCR (%) RC-CCR (%) 
   𝜌𝜌 = 0.5 𝜌𝜌 = 0.75 𝜌𝜌 = 0.95 

DMU1  1  0.9250 (7.50) 0.9451 (5.49) 0.9510 (4.90) 0.9548 (4.52) 
DMU2  1  0.8594 (14.06) 0.8847 (11.53) 0.8948 (10.52) 0.9019 (9.81) 
DMU3  1  0.9048 (9.52) 0.9255 (7.45) 0.9328 (6.72) 0.9377 (6.23) 
DMU4  1  0.9048 (9.52) 0.9255 (7.45) 0.9328 (6.72) 0.9377 (6.23) 
DMU5  1  0.9048 (9.52) 0.9255 (7.45) 0.9328 (6.72) 0.9377 (6.23) 
DMU6  1  0.9250 (7.50) 0.9451 (5.49) 0.9510 (4.90) 0.9548 (4.52) 
DMU7  1  0.9035 (9.65) 0.9255 (7.45) 0.9328 (6.72) 0.9377 (6.23) 
DMU8  1  0.8520 (14.80) 0.8768 (12.32) 0.8870 (11.30) 0.8940 (10.60) 
DMU9  1  0.8900 (11.00) 0.9069 (9.31) 0.9135 (8.65) 0.9196 (8.04) 
DMU10  0.9403  0.7890 (16.09) 0.8151 (13.31) 0.8259 (12.17) 0.8334 (11.37) 
DMU11  0.9346  0.7760 (16.97) 0.8000 (14.40) 0.8106 (13.27) 0.8180 (12.48) 
DMU12  0.8290  0.7108 (14.26) 0.7299 (11.95) 0.7367 (11.13) 0.7413 (10.58) 
DMU13  0.7997  0.6659 (16.73) 0.6861 (14.21) 0.6950 (13.09) 0.7012 (12.32) 
DMU14  0.7733  0.6623 (14.35) 0.6804 (12.01) 0.6878 (11.06) 0.6930 (10.38) 
DMU15  0.7627  0.6319 (17.15) 0.6490 (14.91) 0.6574 (13.81) 0.6633 (13.03) 
DMU16  0.7435  0.6125 (17.62) 0.6288 (15.43) 0.6369 (14.34) 0.6426 (13.57) 
DMU17  0.6873  0.6005 (12.62) 0.6181 (10.07) 0.6245 (9.14) 0.6289 (8.50) 
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It should be noted that the results are provided under the full protection level, i.e., 𝛤𝛤𝑗𝑗
𝑥𝑥𝑥𝑥 = 7 

where the level of protection can vary between 0 and 7. Let 𝛤𝛤𝑗𝑗
𝑥𝑥𝑥𝑥 = 𝛤𝛤𝑜𝑜𝑥𝑥 + 𝛤𝛤𝑜𝑜

𝑦𝑦 in models (6) and 
(9) to analyse the efficiency and ranking of DMUs. Furthermore, we define three scenarios of 
correlation values (weak, moderate and strong correlation) to study the effect of different levels 
of correlations between uncertain input and output data on the performance evaluation of 
DMUs. To this end, for each constraint the random data associated with inputs and outputs are 
generated in such way that the correlation between inputs and outputs is changed to around 0.5, 
0.75 and 0.95 for weak, moderate and strong correlation, respectively. 

Table 1 shows that the efficiency scores are uplifted when the correlation between inputs and 
outputs increases. One of the most important concepts in robust optimization is calculating the 
price of robustness to control the trade-off  between conservatism level against the uncertainty 
and the objective function value [5]. In this study, the price of robustness of efficiency scores 
are calculated as: (ECCR − ER) ECCR⁄  where ECCR and ER are the efficiency scores of the 
deterministic and robust CCR models, respectively. The price of robustness of model (6) and as 
well as model (9) for different level of correlations are presented as numbers in the parentheses 
in Table 1. Resultantly, the price of robustness from the robust model is decreased when the 
correlations between uncertain inputs and outputs are on the rise.  

6. COCLUSION 

In this paper, a new robust DEA model is developed for situations whereby the correlation 
between uncertain data exists in the problem. This model contributes to the related literature 
because it is of interest to decision-makers to decrease the price of robustness against the data 
uncertainty. Most importantly, the current study considers polyhedral uncertainty sets and the 
correlated case to propose a robust correlated DEA model. It can be concluded that the presence 
of significant correlations between the uncertain data results in efficiency measures that are 
more robust against uncertainty. 
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ABSTRACT 
The traffic problem is one of the greatest problems in today's life. Traffic imposes plenty of costs to 
people, and hence the need to provide solutions to improve it is necessary. In this paper, the traffic 
problem of one of the busiest passages in Qazvin city, namely Sabzeh Meydan intersection, has been 
investigated. After introducing the problem definition, the raw data collected from the environment will 
be explained. Using the data collected, a simulation model of the intersection is created in ED software. 
Lastly, two scenarios are designed to improve traffic conditions and reduce waiting time. To compare 
scenarios, both scenarios are modeled via ED. The results proved both scenarios are efficient. Given that 
the first scenario is costless and immediately applicable, it could be a better option in the short term; 
however, in the long term, the second scenario could be a positive alternative.  
Keywords: Traffic management, Simulation, Urban traffic, Timing lights, Enterprise Dynamics. 
 
1. INTRODUCTION  

People have created various systems of production and service to meet their demands. These 
systems have grown and developed over time, and in turn, have created a variety of problems 
[1]. The complexities of these systems have made the decision-making and control process very 
difficult for those who are responsible. Therefore, different systems, methods, and techniques 
have been developed to solve the problems and ultimately help the authorities to identify and 
improve the performance and decision making depending on the type of system and the problem 
involved. Simulation is one of the ways to understand the current state and improve the 
performance of systems. Simulation is the science of building a model of a process or system to 
evaluate and test strategies. In fact, simulation is a way of knowing the results of proposed ideas 
before they are implemented [2].  
Researchers employed the simulation tool on a variety of topics. Mahdavi and Mousavi have 
provided a new solution to reduce the congestion of the convenience store chain queue with the 
ARENA software[3]. The purpose of this study is to analyze the queue system and provide a 
solution to the crowd congestion in the convenience store. Nuno et al. provide improved 
hospital workflow through the application of the principles of pure thinking and simulation by 
ARENA Software [4]. Rimo and Tin have proposed a simulation study of capacity utilization to 
predict future capacity for production system stability with ARNA software [5]. Sadjadi et al. 
designed a five-tier supply chain system to minimize costs and improve service levels [6]. 
Ebrahimzadeh and Arjmand provided ED software to simulate and optimize the Karaj oil 
storage system [7]. Lastly, scenarios to reduce the waiting time of tankers were presented and 
evaluated by a multi-criteria decision-making method called TOPSIS. 
One of the constant challenges of humans in all ages in today’s modern cities is the issue of 
transportation. Transportation has become an integral part of human life and has always been 
considered one of the most critical issues for governments in all countries. In today's modern 
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world, the issue of transportation has become of great importance. Increasing the number of 
vehicles in addition to the constraints of urban spaces has created significant problems for urban 
mobility. In this regard, the researchers have fulfilled different studies. Hossinlo et al. analyzed 
the traffic in the city [8]. To do so, they investigated traffic on Tehran's Shahid Dastgheib Street 
using Corsim simulation software. The purpose of this study was to reduce waiting time at peak 
traffic. Salimifard and Ansari modeled and simulated urban traffic using the Petri Rainbow 
software [9]. Their goal was to reduce traffic by adjusting the traffic lights time. Moayadfar and 
Faizi designed and developed a simulation approach to improve the access network model in 
Sanandaj city [10]. Their goal was to reduce the traffic on Liberty Square in the city. Hejazi 
introduced various scenarios to simulate traffic flow in Kian Pars and Kian Abad neighborhoods 
of Ahvaz city using a simulation method [11]. He used AIMSUN software to simulate. 
In this paper, the vehicles crossing the Qazvin freeway intersection is examined. Having 
Collected data on the vehicles entering each street, leading to this intersection and calculate 
their distribution, we provided the model via ED software. To improve traffic, metrics are 
defined and two alternative scenarios will be presented. Finally, the results of the scenario 
simulation model are presented, taking into account the criteria presented.  The general structure 
of the article is as follows: Section 2 and 3 introduce the problem definition and assumptions, 
respectively. In the next section, the model will be implemented in ED software. In section 5, 
the model validation is considered. Afterward, improvement scenarios are presented and 
compared. Lastly, the conclusion section is considered.   
 
2. PROBLEM DEFINITION  

The considered location is the intersection of Imam Khomeini with Sabzeh Meydan streets in 
Qazvin city called Sabzeh Meydan intersection, which has heavy traffic due to being located in 
the city center. The traffic has caused many problems for citizens as they waste much time in 
traffic every day. For this reason, the authorities have made many efforts to enhance this 
problem, most notably by adding Bus Rapid Transit (BRT) lines. Despite a large amount of 
money spent on this operation,  the traffic problem has remained. The directions of this 
intersection are as shown in the Figure. 1. 
 
3. PROBLEM ASSUMPTIONS  

In this section, the assumptions of the problem are presented: 
• According to the figure above, routes 3 and 4 are two-way, and routes 1 and 2 are one-

way. Route 1 has six lines. According to the observations, the average percentage of 
movement from each line to each route is shown in Table 1. 

• The width of 1 and 2 streets is 18 meters, while the widths of 3 and 4 streets are 20 meters. 
• The average speed of vehicle departures (m/s) on lanes 1, 3, and 4 is 8, 7, and 7, 

respectively. 
• In this system, the entity is cars. 
• The feature of this system is speed and destination. 
• The activity is a specified length of time in which the car moves. 
• An event is an instantaneous event that can change the state of the system that enters or 

leaves the street in the desired system. 
• System state refers to the set of variables required to describe the system at any given time 

for the study. In this system, the number of cars in queue and the number of lines of the 
street are the states of the system. 

Based on the data collected, the vehicle entry rate and their stop rate at the intersection are 
shown in Table 2. 
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Figure 1. An overview of the system 

 
 

Table 1. Entry rates for different routes 
Line/Route 2 3 4 

a(1) - 100% - 
b(1) - 100% - 
c(1) 97% 3% - 
d(1) 90% 5% 5% 
e(1) 91% - 9% 
f(1) 86% - 14% 
a(4) 13% 87% - 
b(4) 9% 91% - 

 
Table 2. Schedule traffic lights  

Route Vehicles’ Arrival Time 
Distribution Function 

Traffic Light Scheduling 
Red Light Green Light 

1 Lognormal (1.44,0.93) 21 24 
3 Weibul(80.77,0.8) 30 10 
4 Lognormal(6.41,6.04) 30 10 

 
 
4. MODELING  THE PROBLEM VIA ED  

An overview of the system model status in ED software is shown in Figure 2. “Source” atoms 
are used to enter cars. Also, the distribution of the arrivals in each of the routes is based on the 
data collected at the inter-arrival time of each “source” atom. At the “Queue” atom, the cars 
enter and exit with the First Input First Output (FIFO) policy. “Time Schedule Availability” 
atoms are also employed to control the movement of cars as traffic lights. This atom is always 
connected to an “Availability Control” atom, and the “Availability Control” atom's output 
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channels are connected to the central channel of the atoms we intend to schedule. In this output 
model, this atom is attached to the central channel of the Node atom. 
 

 
 

Figure 2.  Schematic model in ED software environment 
 
5. MODEL VALIDATION  

To validate the simulated model with the real one and determine its validity for future decisions, 
we test the model. The validation process of a model has two purposes: 
1. Create a model whose behavior is so close to the actual system's performance.  
2. Promote the validity of the model to an acceptable level for managers and other decision-

makers. 
For the verification of the present simulation model and its compatibility with the mental model, 
the outputs have been examined and evaluated to fit our mental model. There are various ways 
to validate the mental model of each system, from consulting with experts and practitioners to 
performing a paired t-test. To complete the validation efforts, we compared the data throughout 
3 hours at different K = 10 days and at congestion times, with the output from the model using 
paired t-test on the same days. Given the normality of the data, we now use the paired t-test to 
validate the model. The results are demonstrated in Table 3. Remark that the paired t-test is used 
due to the fact that the data follows a normal distribution. The hypothesis test is as follows: 

𝐻𝐻0 = E(Z) = E(W) or 𝐻𝐻0:μd = 0 (1) 

Where Z represents the actual system output over 3 hours, and W is the forecasted output level 
in obtained by the simulation model. In this test, the level of significance is assumed to be equal 
�W�R���������������.� ������������ 
The numerical value of the statistics is obtained according to Table 3  

𝑡𝑡0 =
𝑑̅𝑑 − μd
Sd

√K
�

=
−28.5

√1047714
√10
�

= −0.088 
(2) 
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Table 3. Model Output   

Input data (j) System Output (Zj) System Output (Wj) Difference (dj) �𝑑𝑑𝑗𝑗 − 𝑑̅𝑑�2 
1 9867 9323 544 2168256.25 
2 8482 9362 -880 2352.25 
3 8576 9222 -646 79806.25 
4 10026 9175 851 773520.3 
5 9638 9277 361 1662810.25 
6 8435 9238 -803 15750.25 
7 10215 9138 1032 3843560.25 
8 8996 9245 -249 461720.25 
9 9561 9288 273 1443602.25 

10 8557 9325 -768 25760.25 
   𝑑̅𝑑 = −28.5 𝑆𝑆𝑑𝑑2 = 1047714 

 
The critical value obtained 𝑡𝑡α 2;K−1⁄ = t 0.025;9 is equal to 2.26. Since |𝑡𝑡0| = 0.088 < t 0.025;9 =
2.26, H0 is not rejected. In other words, there is no different output between the system response 
and model predictions. This means that the simulated model is valid. 
 
6. EVALUATION OF THE PROPOSED SCENARIOS  

 In this paper, two different scenarios are considered to reduce queue waiting time. 
1. Optimization of traffic lights scheduling 
2. Construction an overpass from Route 1 to Route 2. 

Both scenarios have been modeled and their results are illustrated in Figure 3. In order to 
measure the results, five criteria are employed. Remark that the lower represent better 
performance in all criteria. According to Figure 3, both scenarios have improved traffic and 
reduce the waiting time regarding all metrics. Accordingly, the first alternative reveals that the 
timing of the traffic lights has improved and there is a significant improvement in all the 
criteria. Moreover, the second scenario also improves considering all criteria. Nevertheless, it 
should be mentioned that this scenario takes time and cost, while the first scenario can be done 
immediately and without any cost. However, the decision on this issue is up to the authorities. 
 

 
Figure 3. Compare the results of the scenarios 
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